001 | 875239 | ||
005 | 20220930130237.0 | ||
024 | 7 | _ | |2 doi |a 10.1007/s11128-020-02692-8 |
024 | 7 | _ | |2 Handle |a 2128/24990 |
024 | 7 | _ | |a WOS:000538059200001 |2 WOS |
024 | 7 | _ | |a altmetric:90058909 |2 altmetric |
037 | _ | _ | |a FZJ-2020-01888 |
082 | _ | _ | |a 004 |
100 | 1 | _ | |0 P:(DE-Juel1)167543 |a Willsch, Madita |b 0 |e Corresponding author |
245 | _ | _ | |a Benchmarking the quantum approximate optimization algorithm |
260 | _ | _ | |a Dordrecht |b Springer Science + Business Media B.V. |c 2020 |
336 | 7 | _ | |2 DRIVER |a article |
336 | 7 | _ | |2 DataCite |a Output Types/Journal article |
336 | 7 | _ | |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |a Journal Article |b journal |m journal |s 1591274828_926 |
336 | 7 | _ | |2 BibTeX |a ARTICLE |
336 | 7 | _ | |2 ORCID |a JOURNAL_ARTICLE |
336 | 7 | _ | |0 0 |2 EndNote |a Journal Article |
520 | _ | _ | |a The performance of the quantum approximate optimization algorithm is evaluated by using three different measures: the probability of finding the ground state, the energy expectation value, and a ratio closely related to the approximation ratio. The set of problem instances studied consists of weighted MaxCut problems and 2-satisfiability problems. The Ising model representations of the latter possess unique ground states and highly degenerate first excited states. The quantum approximate optimization algorithm is executed on quantum computer simulators and on the IBM Q Experience. Additionally, data obtained from the D-Wave 2000Q quantum annealer are used for comparison, and it is found that the D-Wave machine outperforms the quantum approximate optimization algorithm executed on a simulator. The overall performance of the quantum approximate optimization algorithm is found to strongly depend on the problem instance. |
536 | _ | _ | |0 G:(DE-HGF)POF3-511 |a 511 - Computational Science and Mathematical Methods (POF3-511) |c POF3-511 |f POF III |x 0 |
536 | _ | _ | |0 G:(DE-Juel1)PHD-NO-GRANT-20170405 |x 1 |c PHD-NO-GRANT-20170405 |a PhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405) |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |0 P:(DE-Juel1)167542 |a Willsch, Dennis |b 1 |u fzj |
700 | 1 | _ | |0 P:(DE-Juel1)144355 |a Jin, Fengping |b 2 |u fzj |
700 | 1 | _ | |0 P:(DE-Juel1)179169 |a De Raedt, Hans |b 3 |u fzj |
700 | 1 | _ | |0 P:(DE-Juel1)138295 |a Michielsen, Kristel |b 4 |u fzj |
773 | _ | _ | |0 PERI:(DE-600)2088114-9 |a 10.1007/s11128-020-02692-8 |g Vol. 19, no. 7, p. 197 |n 7 |p 197 |t Quantum information processing |v 19 |x 1570-0755 |y 2020 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/875239/files/Willsch2020_Article_BenchmarkingTheQuantumApproxim.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/875239/files/Willsch2020_Article_BenchmarkingTheQuantumApproxim.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:875239 |p openaire |p open_access |p OpenAPC_DEAL |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)167543 |a Forschungszentrum Jülich |b 0 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)167542 |a Forschungszentrum Jülich |b 1 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)144355 |a Forschungszentrum Jülich |b 2 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)179169 |a Forschungszentrum Jülich |b 3 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)138295 |a Forschungszentrum Jülich |b 4 |k FZJ |
913 | 1 | _ | |0 G:(DE-HGF)POF3-511 |1 G:(DE-HGF)POF3-510 |2 G:(DE-HGF)POF3-500 |a DE-HGF |b Key Technologies |v Computational Science and Mathematical Methods |x 0 |l Supercomputing & Big Data |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |
915 | _ | _ | |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |a Creative Commons Attribution CC BY 4.0 |
915 | _ | _ | |0 StatID:(DE-HGF)0600 |2 StatID |a DBCoverage |b Ebsco Academic Search |
915 | _ | _ | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR |b QUANTUM INF PROCESS : 2017 |
915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |
915 | _ | _ | |0 StatID:(DE-HGF)0111 |2 StatID |a WoS |b Science Citation Index Expanded |
915 | _ | _ | |0 StatID:(DE-HGF)9900 |2 StatID |a IF < 5 |
915 | _ | _ | |0 StatID:(DE-HGF)0510 |2 StatID |a OpenAccess |
915 | _ | _ | |0 StatID:(DE-HGF)0030 |2 StatID |a Peer Review |b ASC |
915 | _ | _ | |0 StatID:(DE-HGF)1150 |2 StatID |a DBCoverage |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |0 StatID:(DE-HGF)0300 |2 StatID |a DBCoverage |b Medline |
915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Clarivate Analytics Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|