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Abstract. I discuss fluid flow at the interface between solids with anisotropic roughness. I show that the
Bruggeman effective medium theory and the critical junction theory give nearly the same results for the
fluid flow conductivity. This shows that, in most cases, the surface roughness observed at high magnification
is irrelevant for fluid flow problems such as the leakage of static seals, and fluid squeeze-out. The effective
medium theory predicts that the fluid flow conductivity vanishes at the relative contact area A/Ao = 0.5
independent of the anisotropy. However, the effective medium theory does not solve the elastic contact
mechanics problem but is based on a purely geometric argument. Thus, for anisotropic roughness the
contact area may percolate at different values of A/Ay depending on the direction. We discuss how this
may be taken into account in the effective medium and critical junction theories.

1 Introduction

Fluid flow at the interface between elastic solids is a com-
plicated topic, in general involving elastic deformations,
complex fluid rheology and interfacial fluid slip [1]. In par-
ticular, the influence of the surface roughness on the fluid
flow dynamics is a highly complex topic. However, if there
is a separation of length scales the problem can be sim-
plified: if R denotes the (smallest) macroscopic radius of
curvature of the (undeformed) surfaces in the nominal con-
tact region, e.g., the radius of a ball, and if R > g, where
Ao is the longest (relevant) surface roughness component,
then it is possible to eliminate (integrate out) the surface
roughness and obtain effective fluid flow equations involv-
ing solid bodies with smooth surfaces (no roughness). The
effective fluid flow equations depend on quantities deter-
mined by the surface roughness, usually denoted fluid flow
and friction factors (there are two fluid flow factors and
three friction factors). These factors depend on the av-
erage surface separation @, which will vary throughout
the nominal contact region; u is the local interfacial sur-
face separation wu(z,y) averaged over the surface rough-
ness [2,3]. In several publications it has been shown how
to calculate the fluid flow factors, which enter in the (mod-
ified) Reynolds equation, and the friction factors, which
enter in the expression for the shear stress acting on the
solids [1,4-10].

Here we consider the simplest fluid flow problems,
which include the leakage of static seals [11,12] and the
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squeeze-out of fluids [13] between elastic solids. For these
applications the roughness enter only via one function,
namely the pressure flow factor ¢, () (in general a 2 x 2
tensor) or, equivalently, the (effective) fluid flow conduc-
tivity oeg defined by the equation

j = _Jeffvﬁ7

where p = (p(z,vy)) is the fluid pressure and J = (J(z,y))
the two-dimensional (2D) fluid flow current, both averaged
over the surface roughness (ensemble averaging). The flow
conductivity oeg is a 2 X 2 matrix (tensor).

As an example, consider a seal consisting of a rub-
ber block with square cross section L x L, with surface
roughness on length scales much smaller than L, squeezed
against a flat surface (see fig. 1). Assume that a high pres-
sure fluid occurs for x < 0 and a low pressure fluid for
x > L (pressure difference AP = P, — P, > 0). In this
case for the chosen coordinate system oeg is a diagonal

matrix:
or 0
Ooft = .
off 0 oy

The pressure gradient Vp is along the z-axis and dp/dx =
—AP/L. Thus, the fluid leakage rate (volume per unit
time) becomes

Q=1LJ,=Lo,AP/L = 5, AP.

From the fluid flow conductivity one can calculate the
pressure flow factor

op = 1200 30eg.
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Fig. 1. A square block L x L rubber seal (green) with surface
roughness squeezed with the uniform pressure pg against a flat
rigid countersurface. A fluid pressure difference AP = P, —
Py, > 0 occurs between the two sides x = 0 and x = L.

For two parallel surfaces without roughness one has
the flow conductivity (Poiseuille flow):

3
_ %o
oy = 12777

where 1 is the surface separation. For a system with sur-
face roughness it is sometimes convenient to define a sepa-
ration u., which depends on the average surface separation

u, so that

3
Ue

Ueﬂ:m

Thus the pressure flow factor

U\ 3
% = ( u )
When the average surface separation u is much larger than
the surface roughness amplitude, v, — % and ¢, — 1.
Note also that when the area of real contact percolates no
fluid flow at the interface is possible and o.g and ¢, both
vanish.

In this paper I discuss fluid flow at the interface be-
tween solids with anisotropic roughness. I show that in the
Bruggeman effective medium theory the fluid flow conduc-
tivity for anisotropic roughness vanishes at the same rela-
tive contact area as for isotropic roughness. However, the
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effective medium theory does not involve solving the elas-
tic contact mechanics problem, and the actual percolation
threshold may depend on the surface roughness anisotropy
as suggested by recent numerical contact mechanics stud-
ies [14-18]. T will discuss how this can be taken into ac-
count in the critical junction and the effective medium
theories.

I also show that, unless the applied pressure is very
small, the Bruggeman effective medium theory and the
critical junction theory give nearly the same results for
the fluid flow conductivity (and the fluid pressure flow
factor). This shows that for applications which involve
only the flow conductivity (or, equivalently, the pressure
flow factor), such as the leakage of static seals and fluid
squeeze-out, in most cases the (short wavelength) surface
roughness observed at high magnification is irrelevant.

2 Qualitative discussion

The theory of fluid flow discussed in this paper is based
on the Bruggeman effective medium theory. This theory is
for an infinite-sized system but real applications and com-
puter simulations involve systems of finite sizes. Finite-size
effects may in some cases be important, in particular for
systems with strongly anisotropic roughness such as sur-
faces grinded in one direction, and for systems with small
nominal contact area.

Consider the contact between two elastic solids with
random surface roughness. One way to (mathematically)
produce systems with anisotropic roughness is to start
with a surface with isotropic roughness, say a square area
of size L x L, and stretch the surface in the z-direction be
a factor 4'/2 and contract it in the y-direction by a fac-
tor 7~1/2, as indicated in fig. 2(b). This will map a circle
on an ellipse (with the same surface area) where the ratio
between the ellipse axis in the z- and y-directions is given
by 7 (Peklenik number [19]).

To get a square unit surface we extend the surface in
the y-direction with similar rectangular units (but from
other realizations, e.g., generated mathematically using
different sets of random numbers) as in fig. 2(b), see
fig. 2(c). If a surface region, with the same size L x L as
the original surface, is cut-out of the surface in fig. 2(c),
the contact area may percolate in the a-direction (see the
dashed square in fig. 2(c)) even if the contact area did not
percolate for the original surface. However, for the infinite
system stretching the contact area obtained from isotropic
roughness cannot change the percolation threshold. This is
clear since a flow channel which is closed before stretching
remain closed after stretching, and a flow channel which is
open before stretching will remain open after stretching.
Indeed, the Bruggeman theory predicts that the contact
area percolates when A = A, where A,/Ay = 0.5 is in-
dependent of v (see sect. 5).

Figure 2 illustrates the effect of stretching the contact
area obtained from isotropic roughness. However, we are
interested in stretching the surface roughness topography.
Solving the elastic contact mechanics problem using the
stretched surface roughness profile will result in a different
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(a)

original
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stretched by factor 2 in x-direction
and 1/2 in the y-direction

()

stretched by factor 2 in x-direction,
and 1/2 in the y-direction

and extended in y-direction

Fig. 2. (a) Asperity contact regions (black) for a system with
random roughness with isotropic statistical properties, and (b)
for a system obtained by stretching by a factor of 2 in the x-
direction and 1/2 in the y-direction. This transformation con-
serves the area and results in anisotropic roughness with v = 4.
(c) Adding 4 different realizations of the stretched roughness
gives a square unit with anisotropic roughness. For a system
of finite size, if the system size is fixed (compare (a) with the
dashed square in (c)) the contact area percolation threshold
depends on the stretching factor «, but for an infinite system
the percolation threshold does not depend on 7.

contact area morphology than just stretching the contact
area obtained for the isotropic roughness. The Bruggeman
effective medium theory for anisotropic systems is based
on stretching the contact area (as in fig. 2), and may there-
fore give wrong predictions for the y-dependence of A/Ag
at percolation threshold.

In ref. [14] I presented an approximate formula for
the fluid flow conductivity which interpolates between the
Bruggeman effective medium theory result for isotropic
roughness, and the known limit for the fluid flow con-
ductivity for the case of strongly anisotropic roughness.
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The expression for the flow conductivity o, proposed in

ref. [14] is
1 <1+7> (1)
Ou oc+vo, /)’

where o = u3/(12n), where 7 is the fluid viscosity and
u = u(x) the interfacial separation at the point x = (z,y).
The (...) stands for ensemble averaging, or averaging
over the probability distribution P(u) of interfacial sep-
arations. For v = 1 this equation reduces to the stan-
dard Bruggeman equation for isotropic roughness, while
for v — 0 it gives o, = (07171 and for v — oo it gives
o, = (o). Both these limits are exact results as is easy
to show directly from the Reynolds equation for thin-film
fluid flow.

The flow conductivity in the y-direction is obtained
from (1) by replacing v with 1/v:

=)

We can write the probability distribution of interfacial
separation as [20, 21]

(2)

Plu) = 4-8(0) + Pu(u), (3)

where P.(u) is the (continuous) part of the distribution
where u > 0. Thus we get
1+
+ <7 > . (4)
oc+v0s/,

When the contact area percolates, A = Ay, no fluid flow
is possible from one side to the other side of the studied
unit, so that o, — 0. When o, — 0 using (4) gives

1 1+~ A

Og Oz7Y Ao

1+~4,
l=———,
7 Ao

or A,/Ao = v/(1 + ). However, a more accurate study
(see sects. 4 and 5) shows that the effective medium pre-
dicts that the relative contact area A/Aq at the percola-
tion threshold does not depend on ~.

Computer simulations of contact mechanics are al-
ways for finite-sized systems. In this case it has been ob-
served [14-18] that when v > 1 the contact area perco-
lates for a smaller relative contact area A,/Ag than when
~ = 1. Similarly, for v < 1 the contact area percolates
for a larger A,/A¢ than when v = 1, and in one study
the results was rather accurately described by the formula
Ap/Ao = /(1 4 7). These results are intuitively clear,
but the simulation results depend on the system size, and
this is hence non-universal. However, a recent study using
different system sizes indicates that the A/Aq at the per-
colation threshold depends on ~ even as the system size
approaches infinite.

The Bruggeman effective medium theory gives flow
conductivities of the form (1) and (2), but with  replaced
by v* = (0, /0.)"/? (see sect. 4). For this case the per-
colation threshold occurs when A/A; = 0.5 independent
of v (see sect. 5).
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3 Tripp number

The most important property characterizing a rough sur-
face is the surface roughness power spectrum C(q). If
z = h(x) is the height coordinate at the point x = (z,y)
then the two-dimensional (2D) power spectrum C(q) =
C(g, qy) is given by

1 .

Cla) = oz [ o)™ (3
where (...) stands for ensemble averaging. For a surface
with isotropic statistical properties, C'(q) depends only
on the magnitude ¢ = |q| of the 2D wave vector q. For
surfaces with anisotropic statistical properties the Tripp
number [9] v(g) is very important as it determines the in-
fluence of the surface roughness anisotropy on interfacial
fluid flow [9,22]. The Tripp number depends on the length
scale considered, i.e., it is a function of the wavenumber
q, and is defined as follows [22]. We introduce polar coor-
dinates q = ¢(cos ¢, sin ¢) and define the matrix

/ " 46 C(@)aa/¢?
D(q) = *2 -

5 (6)
/0 6 C(q)

Note that D(q) is a symmetric matrix and can be diagonal-
ized by an orthogonal transformation. We denote the di-
agonal elements by 1/(14+) and v/(14+) where v = v(q)
is the Tripp number, which depends on the wavenumber
q. If C(q) only depends on the magnitude of the wavevec-
tor then D;;(q) = d;5/2, so that v =1 for roughness with
isotropic statistical properties.
One can also define the average Tripp number using

/ 29 C(a)qa/q’

0T /dqu(q)

(7)

Let us study
qq
1= [@qc@%

for a particular case. Assume that f(x,y) = f(r) only
depends on the magnitude of the coordinate x and con-
sider the function f(z/ag,y/ay). If f(r) = 0 is a circle
then f(x/ay,y/a,) = 0 is an ellipse. In wavevector space
we get the function ¢(¢,a.,qya,). Assume that C(q) =

9(qzaz, qyay) with g(qz,qy) = g(q). Writing ¢, = gzaa,
qy = qyay we get

1 2/ / 1
| 9D (@ /ay)?
» ( (q;/ax)Q qgc%/(“%%/)) '

%qy/(azay)  (qy/ay)®

=

In polar coordinates

Q@ =q cos¢,  q,=q sine
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we get

1
d2 / /
g0y / a9 )a;2 cos? ¢ + ay 2sin® ¢
(azay)~! cos¢sin¢>

—9 .2
a, = sin” ¢

I =

a, % cos? ¢
X . _
(agay)~ ' cospsing

or

I =

1 1
/ d*q’ g(q")

Ay Qly cos2 ¢ + 42 sin? ¢
cos’¢p 0
X .
0 ~%sin?¢
Let us denote a,/a, = v which we refer to as the Tripp

number. Since ¢g(¢’) only depends on the magnitude of q’
we can write (8) as

1 1 1
I= a*q g(¢ —/d
gy / ¢ 9la )27T ¢cos2¢+72 sin? ¢

cos? ¢ 0
X .
0 ~%sin®¢

Finally using that

(8)

/qu’g(q') = /dQQQ(Qxaxaany) = /quC(QL

Ay

we get

1 1 cos’¢p 0
D:—/dd) — s o)
2w cos? ¢ + 2 sin” ¢ 0 ~*sin“¢

The integral over ¢ is easy to perform (see appendix A)

giving
1 (1 0)
D=—— .
1+~ \0xy

Note that the matrix D is a symmetric matrix which
can be diagonalized. Since Tr D = 1, in the coordinate
system where D is diagonal there is only one number
(here denoted «) characterizing D. Thus we can always
write D on the form (9) in the coordinate system where
it is diagonal even if C(gy, ¢,) is not of the form assumed
above. In general, it is always possible to generate surfaces
with anisotropic roughness which has an angular averaged
power spectrum which is self-affine fractal, and with asym-
metry characterized by the Tripp number ~.

(9)

4 Bruggeman effective medium theory for
fluid flow

Effective medium theories are simple, but very useful
and often accurate methods to describe some properties
of inhomogeneous materials. The effective medium ap-
proach assumes that the material in randomly disordered
at length scales much shorter than the length scale of
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Fig. 3. In the effective medium approach a system with
anisotropic roughness is replaced by an effective system with
the (constant) flow conductivity ges. The effective flow conduc-
tivity is determined as follows: An elliptic region with the con-
stant surface separation u is embedded in the effective medium.
The flow current J,(x,y) for this system depends on the sur-
face separation w in the elliptic region. The effective conduc-
tivity is determined by the condition that J,, averaged over the
probability distribution of surface separations P(u) is equal to
the flow current obtained using the effective medium every-
where.

interest. Typical applications of effective medium theo-
ries are the optical properties of inhomogeneous materi-
als, and the electric or fluid transport in inhomogeneous
materials. There are several different (but related) effec-
tive medium theories, e.g. the coherent potential approx-
imation or the Bruggeman effective medium approxima-
tion [15-17,23-27]. In earlier publications we have shown
how the leakage of seals can be accurately described using
the Bruggeman effective medium theory for systems with
random but isotropic surface roughness [12].
The fluid flow current

J=—0Vp, (10)

where
u 11
g = m, ( )

where u(x) is the interfacial separation at the point x and
71 the fluid viscosity. Conservation of mass

V.-J=0. (12)
We will replace the inhomogeneous system with a homoge-
neous system with the average interfacial separation @(x)
which can be treated locally as a constant. The average
flow current

J =0V (13)

The flow conductivity oeg in the Bruggeman effective
medium approach is determined as indicated in fig. 3.
That is, in the effective medium approach a system with
anisotropic roughness is replaced by an effective system
with the (constant) flow conductivity o.s. The effective
flow conductivity is determined as follows: An elliptic re-
gion with the constant surface separation u is embedded
in the effective medium. The flow current J,, (x, y) for this
system depends on the surface separation u in the ellip-
tic region. The effective conductivity is determined by the
condition that J, averaged over the probability distribu-
tion of surface separations P(u) is equal to the flow current
obtained using the effective medium everywhere.
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The treatment which follows is similar to those pre-
sented in refs. [24] and [25]. Let us write

J. = —oVp, inside the elliptic region, (14)

J. = —0xVp, outside the elliptic region. (15)
Thus if we define

Ju = *Ucffvp‘i"]la (16)

then J; = 0 outside the elliptic region. Using (12) we get
V-oegVp=V-J = /de’(S(X -x"\V-Ji(x). (17)

If we define

V. 0a8VG(x —x') = §(x — x'), (18)

we can write
V- |:O'eﬁ‘ <Vp - /d2$IVG(X - x"V' ~J1(x’)>} =0.
This equation is satisfied by
Vi [ VG- XV D) = Vi,
where Vp© is a constant vector. Thus

Vp = Vp° + /d%c'VVG(x —x') - Jy (%)), (19)
where we have performed a partial integration and used
that J;(x) vanishes outside the elliptic region.

The problem above involves equations very similar to
those in electrostatics (see appendix B). From electrostat-
ics we know that if an elliptic (homogeneous) body is em-
bedded in a (homogeneous) dielectric media, in an applied
electric field the electric polarization in the inclusion is
uniform. In the present case this implies that J; is con-
stant in the elliptic region where the interfacial separation
equals u (a constant). Since J; vanishes outside the ellip-
tic region, if we define f(x) = 1 inside the elliptic region
and f(x) = 0 outside, we can write (19) as

Vp=Vp®+@Q-Ji, (20)

where the matrix

Q= /de fxX)VVG(x), (21)

where the integral is over the whole zy-plane. Since J,, =
—oVp inside the elliptic region (see (14)) from (16) we get

J1 = (0ot — 0)Vp. (22)
Substituting this in (20) gives

Vp=Vp°+Q- (0t — )V,
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or
[1-Q - (oex — )] Vp = Vp°,
or
Vp=[1-Q-(0eg — )] Vp°.
Using (22) and (23) we get
i = (0ert = 0)Vp = (0o = 0) [1 = Q- (00 — 0)] " V1.

We demand that the average of J; vanishes which gives
(J1) = (oot =) [1 = Q- (00t — )] ") Vp® = 0.
Since Vp° is an arbitrary constant vector we get
((Oet =) [1 = Q- (et — 0)]71> =0.

Since @ is a diagonal matrix (see below) with components
Q11 and Qa, the matrix M = [1 — Q - (oeg — 0)] is also
diagonal with the elements

My =1~ Q11(0z *U)

(23)

(24)

and
MQQ =1- QQQ(Uy - 0').
Thus, we get from (24):

<1—Q11(%—U)>:0’ (25)

oy —0 _
<1—Q22(0y—0)> N (26)

The Fourier transform of (18) gives
1
—-q- UeﬁqG(q) = (271_)2 )

or ) )

G(q) = = (27’(’)2 Umq% + O_yq; (27)
and (21) gives
Q= /d%/qudQQ’f(q’)(—qq)G(q)e“q*q/)"‘

= (2 [ 4 fla)(-aa)Gla). (28)

Using (27) and (28) and ¢;, = gzaz, ¢, = ¢ya, and using
that f(q) = f(q') we get

_ 1 2 7 / 1

= / C4 ) Ty + 0, (¢, /ay)?

( (d,/a,)? q;q;/wmay))
.,/ (azay)  (d)/ay)? )
or

1 RN

Q= _— /dzq f(q)%/dé

1

x = 5 2 . 2
Oz~ COS% ) + oyay “ sin” ¢

(azay) ™! cos ¢psin ¢>

22
a, “sin” ¢

a;%cos? ¢

x
((away)_1 cos ¢ sin ¢
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Using that
1

A0y

/ & f(d) = / Lqfl@) = flx=0)=1,

we get
1 1
-~ [a
@ 2T / ¢ opaz 2 cos? ¢+ ayay_2 sin? ¢
(aza,)~! cos ¢sin ¢>

92 .. 92
a, ”sin” ¢

a;%cos? ¢

. <(axay)1cos¢sin¢
1 1
~ 2r0, /d¢ cos? ¢ +v2(o,/0,) sin® ¢

cos? ¢ 0
X .
0 ~2sin®¢

Using (A.1) and (A.2) this gives

1 1

Q11 = o 11 (0. Jo)i/? (0, /0a) 12 (29)
_ 1 A(oy/os)'?
Q22 = o1 +’yE/Uy/Jz)l/2 . (30)
Substituting (29) in (25) and (30) in (26) gives

1 <1+7*>’ (31)
Oy o+Y'0o,

1/ 1+

o~ eranm) o

where v* = (0, /0,)/2.

5 Limiting cases

Consider first the case when v* — oco. In this case
from (31) we get 0, = (¢) and from (32) o, = (o)7L
Note that

7 =1(2)" -

Thus if v — oo it follows that v* — oo.

Note that when +* — oo, if the area of real contact
A >0 we get (u=')~! =0, so that o, = 0 and no fluid
can flow in the y-direction. This result is clear from a
physical point of view since strips of contact will extend
between the two edges of the system in the x-direction
as indicated in fig. 4 and no fluid flow is possible in the
y-direction. The results for o, and o, when v — oo (or
v — 0) are well known and can be easily obtained directly
from the Reynold thin-film fluid flow equation with u(x,y)
only depending on y (or x).

Next, let us consider the case when we increase the
nominal contact pressure so we approach the limit when
the contact area percolates. When the contact area per-
colates no fluid flow is possible from one side to the other
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Fig. 4. Example of area of real contact (black) as v — oo.

side of the studied unit, so that o, — 0. We can write the
probability distribution of interfacial separation as [20,21]

A
—6

P(u) = i

(U) + PC(u)v

where P.(u) is the part of the distribution where u > 0.
Thus we get

1 _14+9"4 < 1+ > (33)
o 07" Ao o+yo./,’

1 14974 < 1+(1/77) > (34)
Oy oy Ao o+ (1/v%)ay c ’

where (...). stands for averaging using P.(u) i.e., over the
non-contact surface area Ag — A. From (33) as g, — 0 we
get
_ 1+ 4
v Ag
We will now show that o, — 0 imply oy — 0 i.e. the
contact area percolates in both the z- and y-directions at
the same time. To prove this, assume that this is not the
case so o, remains non-zero as o, — 0. It then follows that
v =5(0y/0:)/? — o0 as o, — 0. In this case (35) gives
A/Ap = 1. This result is incorrect because we know that
the contact area when v = 1 percolates when A/Ay = 0.5.
Thus o, — 0 implies o, — 0 and from (34) we get

1

(35)

* AP
17(1+7)A0. (36)
Using (35) and (36) gives v* = 1 and A,/A = 1/2. Using
v = 7(oy/0,)"? and v* = 1 we get 0, = %0, which
holds as o, — 0.

Finally, let us consider the case when the separation
u(x) = u + du(x) where u is the average separation and
du/u < 1. This case was studied in appendix A in ref. [14]
but where we now must replace v with v*. However, since
v* = v to zero order in du the results derived in ap-
pendix A in ref. [14] are still valid and we conclude that
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the effective medium theory results for o, and o, is exact
to order du? and that v can be obtained from the matrix
D involving only the surface roughness power spectrum.

6 Effective medium theory for corrected
percolation threshold

The 2D Bruggeman effective medium theory predicts that
the contact area percolates for A/Ay = 0.5 independent
of v. However, numerical contact mechanics calculations
for randomly rough surfaces predict that the contact area
percolate for A/Ag =~ 0.42 for v = 1, and for A/Ay > 0.42
when v < 1 and A/Ay < 0.42 when v > 1. However, more
studies are needed to determine the influence of finite-size
effects, and to determine the A,(y)/Ao curve for large
systems.

In ref. [27] it was suggested how to modify the Brugge-
man effective medium theory so that it correctly repro-
duces the percolation for A,/Ay ~ 0.42. The resulting
theory was found to be in good agreement with exact nu-
merical results for the flow conductivity. Here we will show
how to generalize this treatment to the case of anisotropic
roughness.

Following ref. [27] we first consider a system in n di-
mension (in the study above, n = 2). In this case (31)
and (32) are generalized to

a% - <a TW*(lvzjz)*ox} ’
oly B <a 8 (1/17)*;751/71)2) |

Following the approach in sect. 4 we get at percolation:

1= (-4 Ay
7(n—1) Ao’
DUy A,

(1/7)(n—=1) Ao’
which gives v* =1 and
Ap _n—1
AO o n ’

Thus, given A,/Ay obtained from (exact) numerical sim-
ulations, if we choose

v
1— A, /A,

n =

then the (modified) effective medium theory will result in
a flow conductivity which vanishes when the (normalized)
contact area reaches the value A,/A, where the contact
area percolate.

7 The critical junction theory of fluid flow

Consider a rubber seal. Assume first isotropic roughness
and that the nominal contact region between the rubber
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and the hard counter-surface is a square area L x L. We
assume that a high-pressure fluid region occurs for z < 0
and a low-pressure region for > L. Now, let us study the
contact between the two solids as we increase the magnifi-
cation ¢. We define ( = L/, where ) is the resolution. We
study how the apparent contact area (projected on the xy-
plane), A((), between the two solids depends on the mag-
nification . At the lowest magnification we cannot observe
any surface roughness, and the contact between the solids
appears to be complete i.e., A(1) = Ag. As we increase
the magnification we will observe some interfacial rough-
ness, and the (apparent) contact area will decrease. At
high enough magnification, say ¢ = (., a percolating path
of non-contact area will be observed for the first time. We
denote the most narrow constriction along this percolation
path as the critical constriction. The critical constriction
will have the lateral size A = L/, and the surface sepa-
ration at this point is denoted by u.. We can calculate u,
using a recently developed contact mechanics theory [2].
As we continue to increase the magnification we will find
more percolating channels between the surfaces, but these
will have more narrow constrictions than the first chan-
nel which appears at ( = (., and as a first approximation
one may neglect the contribution to the leak rate from
these channels. An accurate estimate of the leak rate is
obtained by assuming that all the leakage occurs through
the critical percolation channel, and that the whole pres-
sure drop AP = P, — P, (where P, and P, is the pressure
to the left and right of the seal) occurs over the critical
constriction (of width and length A. &~ L/(. and height
uc). We refer to this theory as the critical-junction theory.
If we approximate the critical constriction as a pore with
rectangular cross-section (width and length A. and height
e < Ac), and if we assume an incompressible Newtonian
fluid, the volume flow per unit time through the critical
constriction will be given by (Poiseuille flow)

ud

Q c

= AP.
127

(37)

In deriving (37) we have assumed laminar flow and that
Ue < A¢, which is always satisfied in practice. The flow
conductivity oeg can be obtained from @ using Q = J, L =
oef(AP/L)L giving

3

U
c 38
121 (38)

Oeft =

The following qualitative picture underpins the criti-
cal constriction model. At the critical magnification sev-
eral fluid conducting channels may appear and each of
them may have several critical constrictions as indicated
in fig. 5(a). Now when we perform the mapping indicated
in fig. 2, where we go from isotropic roughness in a square
area L X L to the anisotropic roughness in a square area
of the same size (dashed square in fig. 2(c)), we increase
the number of flow channels in the z-direction by a factor
of ¥1/2, and on each flow channel we reduce the number
of critical junctions by a factor of /2. Hence the fluid
conductivity o, = v0g. In a similar way one can show
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(@)

(b)

Fig. 5. (a) Percolating fluid flow channels (lines) and critical
constrictions (black dots) for a L x L square unit system with
isotropic roughness. (b) The percolating fluid flow channels and
critical constrictions for a system obtained by stretching by a
factor of 2 in the z-direction and 1/2 in the y-direction (Peke-
ling number v = 4). After this mapping, the concentration of
flow channels is increased by a factor of 2 in the z-direction
and reduced by a factor of 1/2 in the y-direction. For a square
unit L X L (not shown) the number of critical constrictions
along each percolating flow channel is reduced by a factor of
1/2 in the z-direction and increased by a factor of 2 in the
y-direction. The net result is that the fluid flow conductivity is
increased by a factor of 4 in the z-direction and reduced by a
factor of 1/4 in the y-direction, i.e., 0, = yo0 and o, = 00/7,
where oy is the flow conductivity for the system with isotropic
roughness in (a).

that o, = 00/v. Note that this implies o, = 7?0, which
we derived above from the effective medium theory close
to the contact area percolation threshold. Note that this
agreement with the effective medium theory requires that
the fluid pressure drop over a critical constriction is not
modified by the stretching-contraction of the system.

To illustrate the accuracy of the critical junction ap-
proach, in fig. 6 I show the fluid pressure flow factor
¢p = 1210,/ as a function of the average surface sep-
aration u (log-log scale). In the calculation we have used
the surface roughness power spectra shown in fig. 7 and
Young’s elastic modulus £ = 10 MPa. Results are shown
for v = 1 (red curves) and v = 4 (blue curves) using
the effective medium theory (solid lines) and the critical
junction theory (dashed curves). In all the calculation we
have assumed A,/A¢ = 0.42 independent of 7. As ex-
pected, the critical junction theory is accurate when the
average surface separation is small enough but is inaccu-
rate for very small contact pressures where the average
surface separation is large; this is expected as for large
average surface separation a nearly uniformly thick fluid
film separate the surfaces and the fluid pressure drop will
not occur over a small number of narrow constrictions,
but will occur nearly uniformly over the whole nominal
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logyo

-7 -6
log,, (average separation) (m)
Fig. 6. Fluid pressure flow factor ¢, = 12n0,/@* as a func-
tion of the average surface separation 4 (log-log scale). In the
calculation we have used the surface roughness power spectra
shown in fig. 7 and Young’s elastic modulus E = 10 MPa. Re-
sults are shown for v = 1 (red curves) and v = 4 (blue curves)
using the effective medium (em) theory (solid lines) and the
critical junction (cj) theory (dashed curves).

rms roughness = 2 um
rms slope = 1.86
H=0.8

3 4 5 6 7 8 9
logie g (1/m)

Fig. 7. Surface roughness power spectrum as a function of the
wavenumber (log-log scale).

contact area. However, this limiting case is not of interest
in sealing applications.

8 Discussion

In ref. [22] we used molecular dynamic simulations to
study the percolation of the contact area with increasing
pressure for Tripp numbers 0.5 < v < 2. We found that
the results could be reasonably well fit with the formula
Ap/Ao = v/(1 + ). However, the Bruggeman effective
medium theory predicts A,/Ay = 0.5 independent of ~.
The effective medium theory for anisotropic roughness is
based on stretching the contact area obtained for isotropic
roughness. In this case it is clear from very simple argu-
ments (see sect. 2) that for an infinite system the perco-
lation threshold does not depend on the asymmetry (or
stretching) parameter . However, the numerical studies
are for surfaces with stretched surface roughness profiles.
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In this case the simulations indicate that A,/A¢ depends
on . This may be a finite-size effect, but a recent study
indicates that A/Ay at the percolation threshold may de-
pend on 7 also for infinite system size.

Recently, Yang et al. have performed a numerical study
of the effect of surface roughness anisotropy on the perco-
lation threshold of sealing surfaces [15]. For surfaces with
isotropic roughness they found A,/Aq ~ 0.48, i.e., close
to the effective medium theory prediction, and larger than
the value 0.42 found by Dapp et al. [27]. As 7 increased
from 0.5 to 1.66, Yang et al. found that A/A( increased
from 0.43 to 0.53, which is a weaker ~y-dependence than
given by A,/Ao = /(1 +7), which predicts that A,/A
increases from 0.33 to 0.63.

The good agreement found between the effective
medium theory and the critical junction theory indicates
that the basic picture behind the critical junction theory is
accurate. The critical junction theory is based on the ob-
servation that when increasing the magnification, at high
enough magnification, say ( = (., a percolating path of
non-contact area will be observed for the first time. As we
continue to increase the magnification we find more perco-
lating channels between the surfaces, but these will have
more narrow constrictions than the first channel which
appears at ( = (., and as a first approximation one may
neglect the contribution to the leak rate from these chan-
nels. This implies that the roughness observed when the
magnification is increased beyond ¢ = (. has a negligible
influence on the leakage of a seal. I a recent comment, Pa-
pangelo et al. [16] state that the leakage rate depends on
the short distance cut-off length A\; (observed at the high-
est magnification (7), which could be an atomic distance,
but this is in general not the case unless then nominal
pressure is so high as to move the critical constriction to
the shortest length scale, which is nearly never the case in
practical applications.

9 Summary and conclusion

I have shown that the Bruggeman effective medium the-
ory and the critical junction theory give nearly the same
results for the fluid flow conductivity (and the fluid pres-
sure flow factor). This shows (qualitatively) that, unless
the nominal contact pressure is so high at to result in
nearly complete contact, the surface roughness observed
at high magnification is irrelevant for the fluid flow during
squeeze-out, or for the leakage of stationary seals.

The effective medium theory predicts that the fluid
flow conductivity vanishes at the relative contact area
AJ/Ap = 0.5 independent of the anisotropy. However, the
effective medium theory does not solve the elastic con-
tact mechanics problem but is based on a purely geomet-
ric argument. Thus, for anisotropic roughness the contact
area may percolate at different values of A/Ay depending
on the direction. I have discussed how this may be taken
into account in the effective medium and critical junction
theories.

The flow conductivity studied in this paper determines
the pressure flow factor which enters in the (by the surface



Page 10 of 11

roughness) modified Reynolds equation of fluid flow be-
tween closely spaced solids in relative motion. The second
(shear) flow factor which enters in this theory can be calcu-
lated using the equations derived in ref. [4]. The complete
theory predicts the influence of surface roughness on prob-
lems like the transition from hydrodynamic to boundary
lubrication (the Stribeck curve), or the friction and fluid
leakage in dynamic seals.
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Appendix A. Two integrals

In sects. 3 and 4 appeared two important integrals

1 [ cos? 1

n-L S A
27 Jo cos?2 ¢ +2sin“¢p 1+7
1 [ sin? 1

L= L E— . (A2)
27 J, cos2p+2sin¢p (1 +7)

Note that I; + 72I, = 1. The results above can the
proved by integration in the complex plane: Introducing
z = €' and writing cos¢ = (z + 1/2)/2 and sin¢ =
(z —1/2)/(2i) and performing the integration around the
circle |z| = 1 results in egs. (A.1) and (A.2).

Appendix B. Flow current in elliptic insertion

The 2D fluid flow problem is mathematically similar to
the electrostatic polarization of a dielectric material. Thus
the fluid flow current and the electric current both satisfy
V-J = 0 (conservation of fluid volume and electric charge,
respectively). The fluid current is related to the pressure
gradient via J = —oVp, where o is the flow conductivity,
and the electric current is related to the electric potential
viaJ = —oV¢, where o is the electric conductivity. Hence,
results obtained in electrostatics for polarizable media can
be used also for the fluid flow problem. In particular, from
electrostatics it is known that if an elliptic region with
constant dielectric properties is embedded in an infinite
dielectric material with other dielectric properties, then
the electric field (and hence the polarization) in the el-
liptic region will be constant, assuming that the electric
field is constant far away from the elliptic region. The cor-
responding result for the fluid flow problem was used in
sect. 4.

Note that when o is constant the equation V -J = 0
gives V2p = 0 (for fluid flow) and V2¢ = 0 (for electrostat-
ics). The results for the electric polarization problem for
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an elliptic insertion can be derived by solving the Laplace
equation V2¢ = 0 using elliptic coordinates [28] or by
complex mapping methods [29].
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permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.
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