000875247 001__ 875247
000875247 005__ 20220930130237.0
000875247 0247_ $$2doi$$a10.1002/elsc.202000002
000875247 0247_ $$2ISSN$$a1618-0240
000875247 0247_ $$2ISSN$$a1618-2863
000875247 0247_ $$2Handle$$a2128/25468
000875247 0247_ $$2pmid$$apmid:32774207
000875247 0247_ $$2WOS$$aWOS:000530629000001
000875247 037__ $$aFZJ-2020-01894
000875247 082__ $$a660
000875247 1001_ $$0P:(DE-Juel1)171232$$aJansen, Roman P.$$b0$$ufzj
000875247 245__ $$aParallelized disruption of prokaryotic and eukaryotic cells via miniaturized and automated bead mill
000875247 260__ $$aWeinheim$$bWiley-VCH$$c2020
000875247 3367_ $$2DRIVER$$aarticle
000875247 3367_ $$2DataCite$$aOutput Types/Journal article
000875247 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1597066777_10375
000875247 3367_ $$2BibTeX$$aARTICLE
000875247 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000875247 3367_ $$00$$2EndNote$$aJournal Article
000875247 520__ $$aThe application of integrated microbioreactor systems is rapidly becoming of more interest to accelerate strain characterization and bioprocess development. However, available high‐throughput screening capabilities are often limited to target extracellular compounds only. Consequently, there is a great demand for automated technologies allowing for miniaturized and parallel cell disruption providing access to intracellular measurements. In this study, a fully automated bead mill workflow was developed and validated for four different industrial platform organisms: Escherichia coli , Corynebacterium glutamicum , Saccharomyces cerevisiae , and Aspergillus niger . The workflow enables up to 48 parallel cell disruptions in microtiter plates and is applicable at‐line to running lab‐scale cultivations. The resulting cell extracts form the basis for quantitative omics studies where no rapid metabolic quenching is required (e.g., genomics and proteomics).
000875247 536__ $$0G:(DE-HGF)POF3-581$$a581 - Biotechnology (POF3-581)$$cPOF3-581$$fPOF III$$x0
000875247 588__ $$aDataset connected to CrossRef
000875247 7001_ $$0P:(DE-Juel1)171476$$aMüller, Moritz-Fabian$$b1$$ufzj
000875247 7001_ $$0P:(DE-Juel1)136862$$aSchröter, Sonja$$b2
000875247 7001_ $$0P:(DE-Juel1)161539$$aKappelmann, Jannick$$b3
000875247 7001_ $$0P:(DE-Juel1)129034$$aKlein, Bianca$$b4$$ufzj
000875247 7001_ $$0P:(DE-Juel1)129053$$aOldiges, Marco$$b5$$ufzj
000875247 7001_ $$0P:(DE-Juel1)129050$$aNoack, Stephan$$b6$$eCorresponding author$$ufzj
000875247 773__ $$0PERI:(DE-600)2071199-2$$a10.1002/elsc.202000002$$gp. elsc.202000002$$n8$$p350-356$$tEngineering in life sciences$$v20$$x1618-2863$$y2020
000875247 8564_ $$uhttps://juser.fz-juelich.de/record/875247/files/elsc.202000002.pdf$$yOpenAccess
000875247 8564_ $$uhttps://juser.fz-juelich.de/record/875247/files/elsc.202000002.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000875247 8767_ $$92020-01-13$$d2020-11-27$$eAPC$$jZahlung erfolgt$$lDEAL: Wiley$$pelsc.202000002
000875247 909CO $$ooai:juser.fz-juelich.de:875247$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000875247 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171232$$aForschungszentrum Jülich$$b0$$kFZJ
000875247 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171476$$aForschungszentrum Jülich$$b1$$kFZJ
000875247 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136862$$aForschungszentrum Jülich$$b2$$kFZJ
000875247 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161539$$aForschungszentrum Jülich$$b3$$kFZJ
000875247 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129034$$aForschungszentrum Jülich$$b4$$kFZJ
000875247 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129053$$aForschungszentrum Jülich$$b5$$kFZJ
000875247 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129050$$aForschungszentrum Jülich$$b6$$kFZJ
000875247 9131_ $$0G:(DE-HGF)POF3-581$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vBiotechnology$$x0
000875247 9141_ $$y2020
000875247 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000875247 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000875247 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000875247 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000875247 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENG LIFE SCI : 2017
000875247 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000875247 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000875247 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000875247 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000875247 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000875247 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000875247 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000875247 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000875247 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000875247 980__ $$ajournal
000875247 980__ $$aVDB
000875247 980__ $$aUNRESTRICTED
000875247 980__ $$aI:(DE-Juel1)IBG-1-20101118
000875247 980__ $$aAPC
000875247 9801_ $$aAPC
000875247 9801_ $$aFullTexts