Home > Publications database > Parallelized disruption of prokaryotic and eukaryotic cells via miniaturized and automated bead mill > print |
001 | 875247 | ||
005 | 20220930130237.0 | ||
024 | 7 | _ | |a 10.1002/elsc.202000002 |2 doi |
024 | 7 | _ | |a 1618-0240 |2 ISSN |
024 | 7 | _ | |a 1618-2863 |2 ISSN |
024 | 7 | _ | |a 2128/25468 |2 Handle |
024 | 7 | _ | |a pmid:32774207 |2 pmid |
024 | 7 | _ | |a WOS:000530629000001 |2 WOS |
037 | _ | _ | |a FZJ-2020-01894 |
082 | _ | _ | |a 660 |
100 | 1 | _ | |a Jansen, Roman P. |0 P:(DE-Juel1)171232 |b 0 |u fzj |
245 | _ | _ | |a Parallelized disruption of prokaryotic and eukaryotic cells via miniaturized and automated bead mill |
260 | _ | _ | |a Weinheim |c 2020 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1597066777_10375 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The application of integrated microbioreactor systems is rapidly becoming of more interest to accelerate strain characterization and bioprocess development. However, available high‐throughput screening capabilities are often limited to target extracellular compounds only. Consequently, there is a great demand for automated technologies allowing for miniaturized and parallel cell disruption providing access to intracellular measurements. In this study, a fully automated bead mill workflow was developed and validated for four different industrial platform organisms: Escherichia coli , Corynebacterium glutamicum , Saccharomyces cerevisiae , and Aspergillus niger . The workflow enables up to 48 parallel cell disruptions in microtiter plates and is applicable at‐line to running lab‐scale cultivations. The resulting cell extracts form the basis for quantitative omics studies where no rapid metabolic quenching is required (e.g., genomics and proteomics). |
536 | _ | _ | |a 581 - Biotechnology (POF3-581) |0 G:(DE-HGF)POF3-581 |c POF3-581 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Müller, Moritz-Fabian |0 P:(DE-Juel1)171476 |b 1 |u fzj |
700 | 1 | _ | |a Schröter, Sonja |0 P:(DE-Juel1)136862 |b 2 |
700 | 1 | _ | |a Kappelmann, Jannick |0 P:(DE-Juel1)161539 |b 3 |
700 | 1 | _ | |a Klein, Bianca |0 P:(DE-Juel1)129034 |b 4 |u fzj |
700 | 1 | _ | |a Oldiges, Marco |0 P:(DE-Juel1)129053 |b 5 |u fzj |
700 | 1 | _ | |a Noack, Stephan |0 P:(DE-Juel1)129050 |b 6 |e Corresponding author |u fzj |
773 | _ | _ | |a 10.1002/elsc.202000002 |g p. elsc.202000002 |0 PERI:(DE-600)2071199-2 |n 8 |p 350-356 |t Engineering in life sciences |v 20 |y 2020 |x 1618-2863 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/875247/files/elsc.202000002.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/875247/files/elsc.202000002.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:875247 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)171232 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)171476 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)136862 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)161539 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)129034 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)129053 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)129050 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Key Technologies for the Bioeconomy |1 G:(DE-HGF)POF3-580 |0 G:(DE-HGF)POF3-581 |2 G:(DE-HGF)POF3-500 |v Biotechnology |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ENG LIFE SCI : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)IBG-1-20101118 |k IBG-1 |l Biotechnologie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IBG-1-20101118 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|