001     875247
005     20220930130237.0
024 7 _ |a 10.1002/elsc.202000002
|2 doi
024 7 _ |a 1618-0240
|2 ISSN
024 7 _ |a 1618-2863
|2 ISSN
024 7 _ |a 2128/25468
|2 Handle
024 7 _ |a pmid:32774207
|2 pmid
024 7 _ |a WOS:000530629000001
|2 WOS
037 _ _ |a FZJ-2020-01894
082 _ _ |a 660
100 1 _ |a Jansen, Roman P.
|0 P:(DE-Juel1)171232
|b 0
|u fzj
245 _ _ |a Parallelized disruption of prokaryotic and eukaryotic cells via miniaturized and automated bead mill
260 _ _ |a Weinheim
|c 2020
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1597066777_10375
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The application of integrated microbioreactor systems is rapidly becoming of more interest to accelerate strain characterization and bioprocess development. However, available high‐throughput screening capabilities are often limited to target extracellular compounds only. Consequently, there is a great demand for automated technologies allowing for miniaturized and parallel cell disruption providing access to intracellular measurements. In this study, a fully automated bead mill workflow was developed and validated for four different industrial platform organisms: Escherichia coli , Corynebacterium glutamicum , Saccharomyces cerevisiae , and Aspergillus niger . The workflow enables up to 48 parallel cell disruptions in microtiter plates and is applicable at‐line to running lab‐scale cultivations. The resulting cell extracts form the basis for quantitative omics studies where no rapid metabolic quenching is required (e.g., genomics and proteomics).
536 _ _ |a 581 - Biotechnology (POF3-581)
|0 G:(DE-HGF)POF3-581
|c POF3-581
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Müller, Moritz-Fabian
|0 P:(DE-Juel1)171476
|b 1
|u fzj
700 1 _ |a Schröter, Sonja
|0 P:(DE-Juel1)136862
|b 2
700 1 _ |a Kappelmann, Jannick
|0 P:(DE-Juel1)161539
|b 3
700 1 _ |a Klein, Bianca
|0 P:(DE-Juel1)129034
|b 4
|u fzj
700 1 _ |a Oldiges, Marco
|0 P:(DE-Juel1)129053
|b 5
|u fzj
700 1 _ |a Noack, Stephan
|0 P:(DE-Juel1)129050
|b 6
|e Corresponding author
|u fzj
773 _ _ |a 10.1002/elsc.202000002
|g p. elsc.202000002
|0 PERI:(DE-600)2071199-2
|n 8
|p 350-356
|t Engineering in life sciences
|v 20
|y 2020
|x 1618-2863
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/875247/files/elsc.202000002.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/875247/files/elsc.202000002.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:875247
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171232
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171476
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)136862
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)161539
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129034
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129053
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129050
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-581
|2 G:(DE-HGF)POF3-500
|v Biotechnology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENG LIFE SCI : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-1-20101118
|k IBG-1
|l Biotechnologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21