000875266 001__ 875266
000875266 005__ 20240610120414.0
000875266 0247_ $$2doi$$a10.1088/1361-6668/ab877c
000875266 0247_ $$2ISSN$$a0953-2048
000875266 0247_ $$2ISSN$$a1361-6668
000875266 0247_ $$2Handle$$a2128/25266
000875266 0247_ $$2altmetric$$aaltmetric:82194911
000875266 0247_ $$2WOS$$aWOS:000533664400001
000875266 037__ $$aFZJ-2020-01910
000875266 041__ $$aEnglish
000875266 082__ $$a530
000875266 1001_ $$00000-0002-1517-4877$$aShishkin, A. G.$$b0$$eCorresponding author
000875266 245__ $$aPlanar MoRe-based direct current nanoSQUID
000875266 260__ $$aBristol$$bIOP Publ.$$c2020
000875266 3367_ $$2DRIVER$$aarticle
000875266 3367_ $$2DataCite$$aOutput Types/Journal article
000875266 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1602162579_14260
000875266 3367_ $$2BibTeX$$aARTICLE
000875266 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000875266 3367_ $$00$$2EndNote$$aJournal Article
000875266 520__ $$aWe have developed planar nanoSQUID with nanobridge-type Josephson junctions based on the oxidation resistant and high H c2 MoRe alloy. The objective of the research was to reduce size of the SQUID loop with the aim being to reduce magnetic flux noise and improve the spatial resolution of the SQUID sensors. Employing RF-magnetron sputtering, electron-beam lithography, and reactive ion etching in CHF3 + O2 plasma using Al hard masks, we have realized nanoSQUIDs with Josephson junctions in the form of 30 − 50 nm wide nanobridges and an effective magnetic flux capture radius of ~ 95 nm. The critical temperature of the fabricated devices was T c  = 7.9 K. The I(V)-characteristics demonstrated critical current I 0sime 114 µA at 4.2 K and modulation period in magnetic fields of ~ 700 Oe.
000875266 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000875266 588__ $$aDataset connected to CrossRef
000875266 7001_ $$00000-0003-1863-4733$$aSkryabina, O. V.$$b1
000875266 7001_ $$00000-0003-2102-2578$$aGurtovoi, V. L.$$b2
000875266 7001_ $$00000-0003-3131-8065$$aDizhur, S. E.$$b3$$eCorresponding author
000875266 7001_ $$0P:(DE-Juel1)130633$$aFaley, M. I.$$b4
000875266 7001_ $$00000-0001-5085-5195$$aGolubov, A. A.$$b5
000875266 7001_ $$00000-0002-5317-0818$$aStolyarov, V. S.$$b6
000875266 773__ $$0PERI:(DE-600)1361475-7$$a10.1088/1361-6668/ab877c$$gVol. 33, no. 6, p. 065005 -$$n6$$p065005 -$$tSuperconductor science and technology$$v33$$x1361-6668$$y2020
000875266 8564_ $$uhttps://juser.fz-juelich.de/record/875266/files/MoRe_nanoSQUID__IEEE_-2.pdf$$yOpenAccess
000875266 8564_ $$uhttps://juser.fz-juelich.de/record/875266/files/Shishkin_2020_Supercond._Sci._Technol._33_065005.pdf$$yRestricted
000875266 8564_ $$uhttps://juser.fz-juelich.de/record/875266/files/MoRe_nanoSQUID__IEEE_-2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000875266 8564_ $$uhttps://juser.fz-juelich.de/record/875266/files/Shishkin_2020_Supercond._Sci._Technol._33_065005.pdf?subformat=pdfa$$xpdfa$$yRestricted
000875266 909CO $$ooai:juser.fz-juelich.de:875266$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000875266 9101_ $$0I:(DE-HGF)0$$60000-0002-1517-4877$$aExternal Institute$$b0$$kExtern
000875266 9101_ $$0I:(DE-HGF)0$$60000-0003-1863-4733$$aExternal Institute$$b1$$kExtern
000875266 9101_ $$0I:(DE-HGF)0$$60000-0003-2102-2578$$aExternal Institute$$b2$$kExtern
000875266 9101_ $$0I:(DE-HGF)0$$60000-0003-3131-8065$$aExternal Institute$$b3$$kExtern
000875266 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130633$$aForschungszentrum Jülich$$b4$$kFZJ
000875266 9101_ $$0I:(DE-HGF)0$$60000-0001-5085-5195$$aExternal Institute$$b5$$kExtern
000875266 9101_ $$0I:(DE-HGF)0$$60000-0002-5317-0818$$aExternal Institute$$b6$$kExtern
000875266 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000875266 9141_ $$y2020
000875266 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000875266 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000875266 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSUPERCOND SCI TECH : 2017
000875266 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000875266 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000875266 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000875266 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000875266 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000875266 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000875266 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000875266 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000875266 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000875266 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000875266 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000875266 920__ $$lyes
000875266 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000875266 9801_ $$aFullTexts
000875266 980__ $$ajournal
000875266 980__ $$aVDB
000875266 980__ $$aI:(DE-Juel1)PGI-5-20110106
000875266 980__ $$aUNRESTRICTED
000875266 981__ $$aI:(DE-Juel1)ER-C-1-20170209