000875266 001__ 875266 000875266 005__ 20240610120414.0 000875266 0247_ $$2doi$$a10.1088/1361-6668/ab877c 000875266 0247_ $$2ISSN$$a0953-2048 000875266 0247_ $$2ISSN$$a1361-6668 000875266 0247_ $$2Handle$$a2128/25266 000875266 0247_ $$2altmetric$$aaltmetric:82194911 000875266 0247_ $$2WOS$$aWOS:000533664400001 000875266 037__ $$aFZJ-2020-01910 000875266 041__ $$aEnglish 000875266 082__ $$a530 000875266 1001_ $$00000-0002-1517-4877$$aShishkin, A. G.$$b0$$eCorresponding author 000875266 245__ $$aPlanar MoRe-based direct current nanoSQUID 000875266 260__ $$aBristol$$bIOP Publ.$$c2020 000875266 3367_ $$2DRIVER$$aarticle 000875266 3367_ $$2DataCite$$aOutput Types/Journal article 000875266 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1602162579_14260 000875266 3367_ $$2BibTeX$$aARTICLE 000875266 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000875266 3367_ $$00$$2EndNote$$aJournal Article 000875266 520__ $$aWe have developed planar nanoSQUID with nanobridge-type Josephson junctions based on the oxidation resistant and high H c2 MoRe alloy. The objective of the research was to reduce size of the SQUID loop with the aim being to reduce magnetic flux noise and improve the spatial resolution of the SQUID sensors. Employing RF-magnetron sputtering, electron-beam lithography, and reactive ion etching in CHF3 + O2 plasma using Al hard masks, we have realized nanoSQUIDs with Josephson junctions in the form of 30 − 50 nm wide nanobridges and an effective magnetic flux capture radius of ~ 95 nm. The critical temperature of the fabricated devices was T c = 7.9 K. The I(V)-characteristics demonstrated critical current I 0sime 114 µA at 4.2 K and modulation period in magnetic fields of ~ 700 Oe. 000875266 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0 000875266 588__ $$aDataset connected to CrossRef 000875266 7001_ $$00000-0003-1863-4733$$aSkryabina, O. V.$$b1 000875266 7001_ $$00000-0003-2102-2578$$aGurtovoi, V. L.$$b2 000875266 7001_ $$00000-0003-3131-8065$$aDizhur, S. E.$$b3$$eCorresponding author 000875266 7001_ $$0P:(DE-Juel1)130633$$aFaley, M. I.$$b4 000875266 7001_ $$00000-0001-5085-5195$$aGolubov, A. A.$$b5 000875266 7001_ $$00000-0002-5317-0818$$aStolyarov, V. S.$$b6 000875266 773__ $$0PERI:(DE-600)1361475-7$$a10.1088/1361-6668/ab877c$$gVol. 33, no. 6, p. 065005 -$$n6$$p065005 -$$tSuperconductor science and technology$$v33$$x1361-6668$$y2020 000875266 8564_ $$uhttps://juser.fz-juelich.de/record/875266/files/MoRe_nanoSQUID__IEEE_-2.pdf$$yOpenAccess 000875266 8564_ $$uhttps://juser.fz-juelich.de/record/875266/files/Shishkin_2020_Supercond._Sci._Technol._33_065005.pdf$$yRestricted 000875266 8564_ $$uhttps://juser.fz-juelich.de/record/875266/files/MoRe_nanoSQUID__IEEE_-2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000875266 8564_ $$uhttps://juser.fz-juelich.de/record/875266/files/Shishkin_2020_Supercond._Sci._Technol._33_065005.pdf?subformat=pdfa$$xpdfa$$yRestricted 000875266 909CO $$ooai:juser.fz-juelich.de:875266$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000875266 9101_ $$0I:(DE-HGF)0$$60000-0002-1517-4877$$aExternal Institute$$b0$$kExtern 000875266 9101_ $$0I:(DE-HGF)0$$60000-0003-1863-4733$$aExternal Institute$$b1$$kExtern 000875266 9101_ $$0I:(DE-HGF)0$$60000-0003-2102-2578$$aExternal Institute$$b2$$kExtern 000875266 9101_ $$0I:(DE-HGF)0$$60000-0003-3131-8065$$aExternal Institute$$b3$$kExtern 000875266 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130633$$aForschungszentrum Jülich$$b4$$kFZJ 000875266 9101_ $$0I:(DE-HGF)0$$60000-0001-5085-5195$$aExternal Institute$$b5$$kExtern 000875266 9101_ $$0I:(DE-HGF)0$$60000-0002-5317-0818$$aExternal Institute$$b6$$kExtern 000875266 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0 000875266 9141_ $$y2020 000875266 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000875266 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000875266 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSUPERCOND SCI TECH : 2017 000875266 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000875266 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000875266 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000875266 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000875266 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000875266 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000875266 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000875266 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium 000875266 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000875266 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000875266 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000875266 920__ $$lyes 000875266 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0 000875266 9801_ $$aFullTexts 000875266 980__ $$ajournal 000875266 980__ $$aVDB 000875266 980__ $$aI:(DE-Juel1)PGI-5-20110106 000875266 980__ $$aUNRESTRICTED 000875266 981__ $$aI:(DE-Juel1)ER-C-1-20170209