001     875266
005     20240610120414.0
024 7 _ |a 10.1088/1361-6668/ab877c
|2 doi
024 7 _ |a 0953-2048
|2 ISSN
024 7 _ |a 1361-6668
|2 ISSN
024 7 _ |a 2128/25266
|2 Handle
024 7 _ |a altmetric:82194911
|2 altmetric
024 7 _ |a WOS:000533664400001
|2 WOS
037 _ _ |a FZJ-2020-01910
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Shishkin, A. G.
|0 0000-0002-1517-4877
|b 0
|e Corresponding author
245 _ _ |a Planar MoRe-based direct current nanoSQUID
260 _ _ |a Bristol
|c 2020
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1602162579_14260
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We have developed planar nanoSQUID with nanobridge-type Josephson junctions based on the oxidation resistant and high H c2 MoRe alloy. The objective of the research was to reduce size of the SQUID loop with the aim being to reduce magnetic flux noise and improve the spatial resolution of the SQUID sensors. Employing RF-magnetron sputtering, electron-beam lithography, and reactive ion etching in CHF3 + O2 plasma using Al hard masks, we have realized nanoSQUIDs with Josephson junctions in the form of 30 − 50 nm wide nanobridges and an effective magnetic flux capture radius of ~ 95 nm. The critical temperature of the fabricated devices was T c  = 7.9 K. The I(V)-characteristics demonstrated critical current I 0sime 114 µA at 4.2 K and modulation period in magnetic fields of ~ 700 Oe.
536 _ _ |a 144 - Controlling Collective States (POF3-144)
|0 G:(DE-HGF)POF3-144
|c POF3-144
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Skryabina, O. V.
|0 0000-0003-1863-4733
|b 1
700 1 _ |a Gurtovoi, V. L.
|0 0000-0003-2102-2578
|b 2
700 1 _ |a Dizhur, S. E.
|0 0000-0003-3131-8065
|b 3
|e Corresponding author
700 1 _ |a Faley, M. I.
|0 P:(DE-Juel1)130633
|b 4
700 1 _ |a Golubov, A. A.
|0 0000-0001-5085-5195
|b 5
700 1 _ |a Stolyarov, V. S.
|0 0000-0002-5317-0818
|b 6
773 _ _ |a 10.1088/1361-6668/ab877c
|g Vol. 33, no. 6, p. 065005 -
|0 PERI:(DE-600)1361475-7
|n 6
|p 065005 -
|t Superconductor science and technology
|v 33
|y 2020
|x 1361-6668
856 4 _ |u https://juser.fz-juelich.de/record/875266/files/MoRe_nanoSQUID__IEEE_-2.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/875266/files/Shishkin_2020_Supercond._Sci._Technol._33_065005.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/875266/files/MoRe_nanoSQUID__IEEE_-2.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/875266/files/Shishkin_2020_Supercond._Sci._Technol._33_065005.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:875266
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 0000-0002-1517-4877
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 0000-0003-1863-4733
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 0000-0003-2102-2578
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 0000-0003-3131-8065
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130633
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 0000-0001-5085-5195
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 0000-0002-5317-0818
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|2 G:(DE-HGF)POF3-100
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SUPERCOND SCI TECH : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21