000875293 001__ 875293
000875293 005__ 20220930130237.0
000875293 0247_ $$2doi$$a10.1002/vzj2.20017
000875293 0247_ $$2Handle$$a2128/24835
000875293 0247_ $$2altmetric$$aaltmetric:81582116
000875293 0247_ $$2WOS$$aWOS:000618773300017
000875293 037__ $$aFZJ-2020-01924
000875293 082__ $$a550
000875293 1001_ $$0P:(DE-Juel1)168553$$aKaufmann, Manuela Sarah$$b0$$eCorresponding author
000875293 245__ $$aSimultaneous multichannel multi‐offset ground‐penetrating radar measurements for soil characterization
000875293 260__ $$aAlexandria, Va.$$bGeoScienceWorld$$c2020
000875293 3367_ $$2DRIVER$$aarticle
000875293 3367_ $$2DataCite$$aOutput Types/Journal article
000875293 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1598946650_24052
000875293 3367_ $$2BibTeX$$aARTICLE
000875293 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000875293 3367_ $$00$$2EndNote$$aJournal Article
000875293 520__ $$aFor vadose zone studies, it is essential to characterize the soil heterogeneity. However, manual soil coring is time consuming and lacks spatial coverage. Ground‐penetrating radar (GPR) has a high potential to map these parameters. However, with conventional common‐offset profile (COP) measurements, soil layer changes are only detected as a function of time, and no exact determination of velocities, and thus permittivity, is possible. For velocity estimation, time‐consuming point‐scale common midpoint (CMP) or wide‐angle reflection and refraction (WARR) measurements are necessary. Recently, a novel simultaneous multi‐offset multichannel (SiMoc) GPR system was released, enabling rapid profiling with virtually continuous acquisition of WARR gathers. For this system, we developed a new processing approach. First, time shifts caused by the different cables and receivers were eliminated by a novel calibration method. In the obtained CMP gathers, groundwave and (when present) reflection velocities were determined with an automated semblance approach. The obtained velocity can be converted to permittivity and soil water content. We tested SiMoc GPR with a synthetic study and time‐lapse field measurements. In the synthetic study, the accuracy of velocity and layer thickness were within 0.02 m ns−1 and 2 cm. The SiMoc field results (spatial sampling of 5 cm) are consistent with coarse sampled single‐channel data (spatial sampling of 10 m). Soil water content changes over the different measurement days were in agreement with nearby installed sensors (one per hectare). Overall, SiMoc GPR is a powerful tool for fast imaging of spatially highly resolved permittivity, and soil water content at a large scale.
000875293 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000875293 588__ $$aDataset connected to CrossRef
000875293 7001_ $$0P:(DE-Juel1)129483$$aKlotzsche, Anja$$b1
000875293 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b2
000875293 7001_ $$0P:(DE-Juel1)129561$$avan der Kruk, Jan$$b3$$ufzj
000875293 773__ $$0PERI:(DE-600)2088189-7$$a10.1002/vzj2.20017$$gVol. 19, no. 1$$n1$$pe20017$$tVadose zone journal$$v19$$x1539-1663$$y2020
000875293 8564_ $$uhttps://juser.fz-juelich.de/record/875293/files/MPDL_R-2020-00457.pdf
000875293 8564_ $$uhttps://juser.fz-juelich.de/record/875293/files/vzj2.20017.pdf$$yOpenAccess
000875293 8564_ $$uhttps://juser.fz-juelich.de/record/875293/files/vzj2.20017.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000875293 8564_ $$uhttps://juser.fz-juelich.de/record/875293/files/MPDL_R-2020-00457.pdf?subformat=pdfa$$xpdfa
000875293 8767_ $$8R-2020-00457$$92020-08-20$$d2020-09-01$$eAPC$$jZahlung erfolgt$$lDEAL: Wiley$$pVZJ-2019-06-0061-ORA.R2
000875293 909CO $$ooai:juser.fz-juelich.de:875293$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000875293 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168553$$aForschungszentrum Jülich$$b0$$kFZJ
000875293 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129483$$aForschungszentrum Jülich$$b1$$kFZJ
000875293 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b2$$kFZJ
000875293 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129561$$aForschungszentrum Jülich$$b3$$kFZJ
000875293 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000875293 9141_ $$y2020
000875293 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000875293 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000875293 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bVADOSE ZONE J : 2017
000875293 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000875293 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000875293 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000875293 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000875293 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000875293 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000875293 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000875293 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000875293 980__ $$ajournal
000875293 980__ $$aVDB
000875293 980__ $$aI:(DE-Juel1)IBG-3-20101118
000875293 980__ $$aAPC
000875293 980__ $$aUNRESTRICTED
000875293 9801_ $$aAPC
000875293 9801_ $$aFullTexts