001     875293
005     20220930130237.0
024 7 _ |a 10.1002/vzj2.20017
|2 doi
024 7 _ |a 2128/24835
|2 Handle
024 7 _ |a altmetric:81582116
|2 altmetric
024 7 _ |a WOS:000618773300017
|2 WOS
037 _ _ |a FZJ-2020-01924
082 _ _ |a 550
100 1 _ |a Kaufmann, Manuela Sarah
|0 P:(DE-Juel1)168553
|b 0
|e Corresponding author
245 _ _ |a Simultaneous multichannel multi‐offset ground‐penetrating radar measurements for soil characterization
260 _ _ |a Alexandria, Va.
|c 2020
|b GeoScienceWorld
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1598946650_24052
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a For vadose zone studies, it is essential to characterize the soil heterogeneity. However, manual soil coring is time consuming and lacks spatial coverage. Ground‐penetrating radar (GPR) has a high potential to map these parameters. However, with conventional common‐offset profile (COP) measurements, soil layer changes are only detected as a function of time, and no exact determination of velocities, and thus permittivity, is possible. For velocity estimation, time‐consuming point‐scale common midpoint (CMP) or wide‐angle reflection and refraction (WARR) measurements are necessary. Recently, a novel simultaneous multi‐offset multichannel (SiMoc) GPR system was released, enabling rapid profiling with virtually continuous acquisition of WARR gathers. For this system, we developed a new processing approach. First, time shifts caused by the different cables and receivers were eliminated by a novel calibration method. In the obtained CMP gathers, groundwave and (when present) reflection velocities were determined with an automated semblance approach. The obtained velocity can be converted to permittivity and soil water content. We tested SiMoc GPR with a synthetic study and time‐lapse field measurements. In the synthetic study, the accuracy of velocity and layer thickness were within 0.02 m ns−1 and 2 cm. The SiMoc field results (spatial sampling of 5 cm) are consistent with coarse sampled single‐channel data (spatial sampling of 10 m). Soil water content changes over the different measurement days were in agreement with nearby installed sensors (one per hectare). Overall, SiMoc GPR is a powerful tool for fast imaging of spatially highly resolved permittivity, and soil water content at a large scale.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Klotzsche, Anja
|0 P:(DE-Juel1)129483
|b 1
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 2
700 1 _ |a van der Kruk, Jan
|0 P:(DE-Juel1)129561
|b 3
|u fzj
773 _ _ |a 10.1002/vzj2.20017
|g Vol. 19, no. 1
|0 PERI:(DE-600)2088189-7
|n 1
|p e20017
|t Vadose zone journal
|v 19
|y 2020
|x 1539-1663
856 4 _ |u https://juser.fz-juelich.de/record/875293/files/MPDL_R-2020-00457.pdf
856 4 _ |u https://juser.fz-juelich.de/record/875293/files/vzj2.20017.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/875293/files/vzj2.20017.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/875293/files/MPDL_R-2020-00457.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:juser.fz-juelich.de:875293
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)168553
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129483
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129549
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129561
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b VADOSE ZONE J : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21