001     875294
005     20230117113025.0
024 7 _ |a 10.1002/hbm.25026
|2 doi
024 7 _ |a 1065-9471
|2 ISSN
024 7 _ |a 1097-0193
|2 ISSN
024 7 _ |a 2128/25356
|2 Handle
024 7 _ |a altmetric:81694343
|2 altmetric
024 7 _ |a pmid:32385973
|2 pmid
024 7 _ |a WOS:000531063700001
|2 WOS
037 _ _ |a FZJ-2020-01925
082 _ _ |a 610
100 1 _ |a Viswanathan, Shivakumar
|0 P:(DE-Juel1)162395
|b 0
245 _ _ |a A response-locking protocol to boost sensitivity for fMRI-based neurochronometry
260 _ _ |a New York, NY
|c 2020
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1598946272_30311
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The timeline of brain‐wide neural activity relative to a behavioral event is crucial when decoding the neural implementation of a cognitive process. Yet, fMRI assesses neural processes indirectly via delayed and regionally variable hemodynamics. This method‐inherent temporal distortion impacts the interpretation of behavior‐linked neural timing. Here we describe a novel behavioral protocol that aims at disentangling the BOLD dynamics of the pre‐ and post‐response periods in response time tasks. We tested this response‐locking protocol in a perceptual decision‐making (random dot) task. Increasing perceptual difficulty produced expected activity increases over a broad network involving the lateral/medial prefrontal cortex and the anterior insula. However, response‐locking revealed a previously unreported functional dissociation within this network. preSMA and anterior premotor cortex (prePMV) showed post‐response activity modulations while anterior insula and anterior cingulate cortex did not. Furthermore, post‐response BOLD activity at preSMA showed a modulation in timing but not amplitude while this pattern was reversed at prePMV. These timeline dissociations with response‐locking thus revealed three functionally distinct sub‐networks in what was seemingly one shared distributed network modulated by perceptual difficulty. These findings suggest that our novel response‐locked protocol could boost the timing‐related sensitivity of fMRI.
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Abdollahi, Rouhollah O.
|0 P:(DE-Juel1)162251
|b 1
700 1 _ |a Wang, Bin A.
|0 P:(DE-Juel1)161286
|b 2
700 1 _ |a Grefkes, Christian
|0 P:(DE-Juel1)161406
|b 3
700 1 _ |a Fink, Gereon Rudolf
|0 P:(DE-Juel1)131720
|b 4
|u fzj
700 1 _ |a Daun, Silvia
|0 P:(DE-Juel1)162297
|b 5
|e Corresponding author
|u fzj
773 _ _ |a 10.1002/hbm.25026
|0 PERI:(DE-600)1492703-2
|n 5
|p 3420-3438
|t Human brain mapping
|v 4
|y 2020
|x 1065-9471
856 4 _ |u https://juser.fz-juelich.de/record/875294/files/MPDL_R-2020-00457.pdf
856 4 _ |u https://juser.fz-juelich.de/record/875294/files/hbm.25026-1.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/875294/files/hbm.25026-1.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/875294/files/MPDL_R-2020-00457.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:juser.fz-juelich.de:875294
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)162395
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)162251
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)161286
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)161406
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131720
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)162297
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b HUM BRAIN MAPP : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21