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Abstract

The timeline of brain-wide neural activity relative to a behavioral event is crucial

when decoding the neural implementation of a cognitive process. Yet, fMRI assesses

neural processes indirectly via delayed and regionally variable hemodynamics. This

method-inherent temporal distortion impacts the interpretation of behavior-linked

neural timing. Here we describe a novel behavioral protocol that aims at dis-

entangling the BOLD dynamics of the pre- and post-response periods in response

time tasks. We tested this response-locking protocol in a perceptual decision-making

(random dot) task. Increasing perceptual difficulty produced expected activity

increases over a broad network involving the lateral/medial prefrontal cortex and the

anterior insula. However, response-locking revealed a previously unreported func-

tional dissociation within this network. preSMA and anterior premotor cortex

(prePMV) showed post-response activity modulations while anterior insula and ante-

rior cingulate cortex did not. Furthermore, post-response BOLD activity at preSMA

showed a modulation in timing but not amplitude while this pattern was reversed at

prePMV. These timeline dissociations with response-locking thus revealed three

functionally distinct sub-networks in what was seemingly one shared distributed net-

work modulated by perceptual difficulty. These findings suggest that our novel

response-locked protocol could boost the timing-related sensitivity of fMRI.
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1 | INTRODUCTION

During a cognitive process, the timeline of when neural populations

become active relative to each other and to behavioral events is

crucial to elucidate how that process is implemented at the neural

level (Calhoun, Miller, Pearlson, & Adali, 2014; Elia Formisano &

Goebel, 2003; King & Dehaene, 2014; Kutas, McCarthy, &

Donchin, 1977; Posner, 2005). Identifying this timeline with functional

Magnetic Resonance Imaging (fMRI) faces the constraint that neural

dynamics on the millisecond timescale are measured only indirectly

via comparatively slow multi-second changes in regional blood

flow and oxygenation (Arthurs & Boniface, 2002; Ekstrom, 2010;

Kim & Ogawa, 2012; Logothetis, Pauls, Augath, Trinath, &

Oeltermann, 2001; Ogawa, Menon, Kim, & Ugurbil, 1998). Due to the

ensuing temporal distortions, the timing structure of a cognitive pro-

cess is a critical determinant of whether its timeline can be identifiedRouhollah O. Abdollahi and Shivakumar Viswanathan should be considered joint first author.
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with fMRI (E. Formisano & Goebel, 2003; R. S. Menon, Luknowsky, &

Gati, 1998; R. S. Menon & Kim, 1999). Therefore, optimizing experi-

mental paradigms to enhance sensitivity for fMRI-based neu-

rochronometry is warranted.

Since fMRI distorts the timescale, one strategy to increase chrono-

metric sensitivity is to modify a paradigm's timescale to be more com-

patible with that of the Blood-Oxygen-Level-Dependent (BOLD) signal

(E. Formisano et al., 2002; Gratton et al., 2017; Ploran et al., 2007;

Ploran, Tremel, Nelson, & Wheeler, 2011; Richter et al., 2000). How-

ever, fMRI's timescale distortion poses a problem illustrated by the fol-

lowing scenario. Suppose A and B are neurocomputational stages of a

cognitive task, where A always precedes B. Interpreting A's functional

relationship to B depends on their timing relative to the behavioral

events of the task. If both A and B always occur between the stimulus

onset and the behavioral response, then A's relationship to B would be

interpreted differently than in a scenario where A always precedes the

behavioral response while B follows it. To avoid such ambiguities, one

solution is to “time-lock” neural dynamics to behavioral events by

directly integrating behavioral events into the neural timeline, as is done

in electroencephalography (EEG) and magnetoencephalography (MEG).

This solution is, however, unavailable to fMRI due to the differing

timescales of the behavioral events (milliseconds) and the BOLD signal

(seconds). To address this issue, we investigated a novel time-locking

strategy based on the paradigm's temporal structure. Rather than modi-

fying a paradigm's overall timescale, the timing of behavioral events on

each trial was used to modify that trial's timescale selectively.

The proposed strategy is directed toward typical experimental para-

digms where the reference time-point is the stimulus onset when the

brain receives an external information input, and the ensuing action

(e.g., pressing a button) represents the output of the cognitive process.

On this stimulus-referenced timeline, the input-to-output transforma-

tion is attributable to the neural processes operating in the time interval

between the stimulus and the response, that is, the response time

(RT) (Donders, 1868; Luce, 1991; Sternberg, 1969). Identifying these

time-bound neural processes, however, requires them to be accurately

distinguished from processes operating outside the RT interval, namely,

in the pre-stimulus and post-response periods. This within/outside dis-

tinction is the target of the proposed strategy. Unlike pre-stimulus neu-

ral dynamics (cf. Busch, Dubois, & VanRullen, 2009), the post-response

neural dynamics are RT-irrelevant as they can no longer influence the

RT. Furthermore, the pre-response and post-response periods are

defined relative to the response event which is independent of the stim-

ulus. Based on this rationale, we devised a response protocol to modu-

late the duration of the post-response processes in a response-locked

manner. We conjectured that this approach enhances the distinguish-

ability of BOLD signal dynamics with a neural origin in the post-

response (RT-irrelevant) versus pre-response (RT-relevant) periods.

To test this conjecture, the response protocol was embedded

within a perceptual decision-making task (Donner, Siegel, Fries, &

Engel, 2009; Gold & Shadlen, 2007; H. R. Heekeren, Marrett, Ruff,

Bandettini, & Ungerleider, 2006; T. Liu & Pleskac, 2011; Tosoni,

Galati, Romani, & Corbetta, 2008). On each trial (Figure 1a), partici-

pants viewed a random moving dot stimulus and reported its motion

direction by pressing a corresponding button. Rather than a single

button-press, the selected button had to be pressed repetitively and

rapidly until a halt was signaled with a MoveOff stimulus. Importantly,

the timing of this MoveOff stimulus was response-locked, that is,

defined relative to the first button-press on that trial.

Each trial's duration was the sum of two intervals: (a) from the

stimulus to the first button press (i.e., the RT) and (b) from the first

button-press until the MoveOff stimulus (i.e., the movement time

[MvT]). The RT and MvT were independently varied in an RT × MvT

design by modulating the stimulus noise levels and the response-

locked timing of the MoveOff stimulus (Figure 1b). With this design,

the mean BOLD differences between trial-types with the same mean

RT but different mean MvTs should have a response-locked neural

origin, namely, after the first button-press.

We evaluated whether these predicted response-locked differ-

ences in the fMRI data increased sensitivity in the context of the per-

ceptual decision-making task. Even though motion direction is a

property of the visual stimulus, stimulus-related RT-modulations have

surprisingly been found to modulate action-related neural processes

in non-human primates but this modulation in the human brain has

been controversial (Donner et al., 2009; Filimon, Philiastides, Nelson,

Kloosterman, & Heekeren, 2013; Gold & Shadlen, 2007; H. R.

Heekeren et al., 2006; H. R. Heekeren, Marrett, & Ungerleider, 2008;

Resulaj, Kiani, Wolpert, & Shadlen, 2009; Tosoni et al., 2014; Tosoni

et al., 2008). We hypothesized that activity modulation by RT and

MvT would provide a strict functional (rather than anatomical) crite-

rion to identify stimulus-modulated regions (pre-response) with a

measurable role in action execution (post-response).

2 | MATERIALS AND METHODS

2.1 | Participants

Thirty-three healthy, young volunteers (mean age: 25.6 years

[SD = 2.8 years], range: 19–32 years, female = 16) participated in the

experiment and received financial compensation. Participants were

right-handed (mean score = 81.2% [SD = 18.2%] [Edinburgh Handed-

ness Inventory (Oldfield, 1971)]), had normal or corrected-to-normal

vision, no history of psychiatric or neurological diseases, and no contra-

indications for MRI scanning. Participants were additionally prescreened

for their ability to perform the task. The local ethics committee

approved the study, which complied with the Declaration of Helsinki.

All volunteers provided their informed consent before the experiment.

Statistical analyses reported here are based on datasets from

30 (of the 33) participants due to the exclusion of 3 datasets based on

quality considerations (see details below).

2.2 | Stimulus specification

Visual stimuli were generated and displayed using the Presentation®

Software (Neurobehavioral Systems, Inc.) on an LCD screen (size:

VISWANATHAN ET AL. 3421



68.6 cm [diagonal], resolution: 1,200 pixels × 800 pixels, frame rate:

60 Hz). The screen was located behind the scanner and was viewed

via a mirror installed on the head coil.

The stimulus on each trial was a centrally displayed random dot

kinematogram (RDK) (Morgan & Ward, 1980; Williams &

Sekuler, 1984) (Figure 1a). The RDK consisted of 600 white-colored

dots (diameter: 0.11� visual angle [v.a.], speed: 8� v.a./s) moving

within an invisible circle (diameter: 6� v.a., background-color: black).

The dots were distributed equally in each of the circle's quadrants.

Each dot had a finite life that ended either (a) after 0.5 s (30 frames),

or (b) when the dot moved outside the invisible circle's periphery. A

dot that met either criterion was replaced on the next frame by a new

dot that appeared at a random location within the circle. To reduce

the abruptness with which dots disappeared at the circle's periphery,

the circle was windowed by a Gaussian luminance envelope so that

dots appeared to be brighter at the circle's center and progressively

dimmer toward the periphery.

On every frame, each dot was assigned a motion direction based

on two trial-specific parameters: (a) coherence (Coh) and (b) global

direction (D). The parameter Coh specified the proportion of dots to

be assigned to the (coherent) motion direction D. These dots with a

coherent motion direction were selected randomly on each frame

while the remaining dots were each assigned a direction selected ran-

domly over the uniform range [0�, 359�]. For example, in an RDK with

D = 90� and Coh = 60%, 360 randomly selected dots (60% of 600) on

each frame would be assigned a motion direction of 90� while each of

the remaining 240 dots would be assigned a random motion direction.

Due to this randomization procedure, a dot with a direction D in one

frame would likely have a different direction in the next frame and

vice versa, thus making it difficult to infer the direction D by tracking

the motion of any single dot.

The global motion direction D could take either of two values:

90� (i.e., upward) or 270� (i.e., downward). A random jitter was added

to the value of D on each trial to limit habituation and learning effects

from repeated exposure to the same motion directions (K Ball &

Sekuler, 1982; Karlene Ball & Sekuler, 1987). This jitter was selected

from a discontinuous range ([−30�, −10�], [+10�, +30�]) to minimize

motion along the cardinal axes. The coherence Coh had three levels

{CohHigh, CohMed, CohLow} that were calibrated per participant to pro-

duce mean response times (i.e., time to report an RDK's direction) of

600 ms, 750 ms, and 900 ms. These RT values were selected to evoke

neural activity differences that can be detected with fMRI and EEG

(Philiastides & Sajda, 2007; Yarkoni, Barch, Gray, Conturo, &

Braver, 2009). The mean coherence values across participants were

CohHigh = 31.2% (SD: 8.7%), CohMed = 18.4% (SD: 5.7%), and

CohLow = 12.7% (SD: 4.2%).

Finally, a small static disc (diameter: 0.2� v.a.) was centrally dis-

played over the whole experiment to serve as a fixation point and as a

F IGURE 1 Experimental paradigm. (a) Trial schematic. Each trial started with the stimulus onset and ended with the stimulus offset.
Participants lay supine in the scanner, and the response device was positioned vertically on their midline. The colors of the central fixation point
and their relative durations are depicted using thick lines on the time-axis. The fixation point was colored red at stimulus onset with a change to
blue following the first button press (i.e., MoveOn signal) and changed back to red after either k = 3 or k = 8 button-presses (i.e., MoveOff signal).
(b) The hypothesized timing between the different stimuli is shown. The MoveOff signal was displayed after either three or eight button presses
(filled squares). The timing of the first button press (open squares) varies with stimulus coherence (black line). The coherently moving dots are
illustrated here with arrows and were not displayed in the experiment. The interval between the first button press to the third/eighth button
press was assumed to be unaffected by stimulus coherence
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cue at different stages of the experiment based on its color (red, blue,

or gray).

2.3 | Paradigm

A crucial context for the experimental paradigm was the response

setup. Response events in the experiment were index finger button

presses, which were recorded with an MRI compatible LUMItouch

response pad (Photon Control Inc., Burnaby, BC, Canada). The

response device was placed on the participant's chest to align the but-

tons vertically along the participant's midline (Figure 1a). Two buttons

were designated as the upper (closer to the participants' head) and

lower (closer to their feet) buttons. Participants positioned their hands

to press the upper and lower button with their left and right index fin-

ger, respectively. The assignment of left/right index fingers to press

the upper/lower buttons was counterbalanced across participants,

that is, half the participants pressed the upper button with the right

hand while the other half used the left hand.

The up/down orientation for both index finger positions and RDK

motion directions ensured that the response rather than the stimulus

primarily drove any lateralization of brain activity. If the stimuli/

responses instead had a left/right orientation (as in Heekeren

et al., 2006; de Lange, Rahnev, Donner, & Lau, 2013; Kelly &

O'Connell, 2013) then lateralized neural activity linked to both the

RDK's motion direction (for example, due to attention orienting) and

the corresponding response (i.e., with the left index finger) would be

lateralized to the same (i.e., right) hemisphere.

Figure 1a is a schematic of each trial's organization and timing.

Each trial began with the display of the RDK stimulus with a red-

colored fixation point at its center. Participants judged whether the

moving dots of the RDK had an upward or downward direction and

reported this perceptual decision by pressing the corresponding upper

or lower button repeatedly and as rapidly as possible. The first

button-press of the response triggered a change in the fixation point's

color from red to blue. Following this color change, participants now

had to monitor the fixation point's color to detect a second color

change while repetitively pressing the selected button. The second

color change (from blue to red) was the signal to halt the response

immediately and marked the end of the trial. For clarity, we hence-

forth refer to these two color changes as the MoveOn (red to blue)

and MoveOff (blue to red) signals. The RDK was continuously dis-

played over the trial's entire duration.

Unknown to the participants, the interval between the first

button-press and the halt-signal (i.e., the blue-to-red color change) was

controlled by their behavior. The button presses were counted in real-

time as they were produced, and the MoveOff signal was displayed

when this real-time count reached a pre-defined target value. This tar-

get value was either 3 or 8 button presses corresponding to a “short

and “long”movement duration (denoted asMovShort andMovLong).

Real-time counting was used rather than a pre-defined period so

that the number of movements associated with MovShort and MovLong

was consistent across individuals to equate for interindividual

differences in maximum tapping rate (cf., the clinical Finger-Tapping

Test: Shimoyama, Ninchoji, & Uemara, 1990). To ensure that the time

to complete three button presses was shorter than to complete eight

button presses, a missed trial occurred if neither button was pressed

within 1,800 ms following stimulus onset or if the required number of

button presses was not completed within 1 s (for MovShort) or 2.5 s

(for MovLong). The MoveOff signal was presented while participants

were pressing a button rapidly and repeatedly. Consequently, we

assumed that instructing a halt would lead to additional button pres-

ses before all movements ceased. The target number of button-

presses 3 and 8 were selected so that the relative time differences

would be maintained even with a few excess button presses.

To prevent the perceptual decision from being prioritized over the

response demands, the RDK stimulus was continuously displayed until

the MoveOff signal to de-emphasize the distinction between the RT

and MvT intervals. This continuous stimulus display also avoided a con-

found between (a) the neural processes associated with the response

onset and (b) processes evoked by the stimulus offset (also see Kelly &

O'Connell, 2013). Strictly speaking, the MoveOff signal was redundant

information as it coincided with the RDK's disappearance from the

screen but this redundant color cueing served to emphasize that the

response requirements were a crucial part of the task.

2.4 | Procedure and training

Participants attended two sessions on separate days: instruction and

training outside the scanner (Session 1), and the main experiment in

the scanner (Session 2).

Training began with detailed task instructions delivered verbally,

following a script. Next, participants were familiarized with the RDK

by performing the task on stimuli that steadily increased in difficulty,

going from 100% coherence to 20% in stepwise reductions of 20%

every 20 trials. This procedure was repeated with additional instruc-

tion as needed until an overall accuracy of 90% was reached. After

familiarization, a calibration procedure followed to identify three

coherence values {CohHigh, CohMed, CohLow} that would produce mean

RTs of 600 ms, 750 ms, and 900 ms, respectively. Briefly, calibration

started with an initial coherence estimate for each target RT (<Coher-

ence, RT>: <90%, 600 ms>; <80%, 750 ms>; <70%, 900 ms>). This ini-

tial estimate was then iteratively refined based on the participant's

performance using the Parametric Estimation by Sequential Testing

(PEST) algorithm (Lieberman and Pentland, 1982). The iterative coher-

ence adjustments (step size: maximum = 8%, minimum = 0.5%; maxi-

mum trials: 50) continued until each target RT was reached with an

accuracy of 90%. The minimum possible coherence value was set to

7% (based on our pilot studies). Calibration for all target RTs was per-

formed concurrently by interleaving trials for each target. For robust-

ness, this calibration procedure was repeated three times, and the

mean coherence across these repetitions was used as the final cali-

brated value. Participants were unaware that these calibrated coher-

ence values would determine the stimuli that they would be exposed

to in the main experiment. Finally, participants performed a shortened
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version of the main experiment to confirm whether the calibrated

coherence values produced the expected RT ordering in the actual

experimental scenario. If the mean RT was lowest for CohHigh, highest

for CohLow, and intermediate for CohMed (with a mean accuracy

≥ 85% per coherence), then calibration was deemed successful, and

participants were invited to the main experiment.

In the second session, participants were re-instructed and prac-

ticed the task before entering the scanner to perform the main experi-

ment. The assignment of left/right index fingers to press the upper/

lower buttons was the same for both sessions. Special precautions

were taken to firmly secure participant's elbows in the scanner to min-

imize head movements while responding. Due to the long duration of

the experiment (~96 min), participants received rest periods of several

minutes between runs when scanning was halted.

2.5 | Trial design

Trials were defined by three independent factors: RDK direction {Up,

Down} × Coherence {CohHigh, CohMed, CohLow} × Mov {MovShort,

MovLong}. The experiment had a total of 624 trials with 52 trials in

each of the 2 × 3 × 2 = 12 conditions.

Trials were organized into four runs (~24 min each) in a rapid-

event design, and each run started and ended with an 11 s task-free

period to minimize transient effects of the starting and ending of the

session on task-related BOLD activity. A run was divided into four

task-blocks (39 trials each) interleaved with 12 s task-free periods

that were indicated by a gray-colored fixation point. Each task-block

ended with a feedback screen (3 s) displaying the numerical accuracy

(in percent) and the number of missed stimuli on that block. The inter-

trial interval varied from 4 to 8 s. To de-confound task and scanner

timings, the trial onset was jittered relative to the start of a new EPI

(uniformly, randomly in the range [0 ms, 2,200 ms (=1TR)] discretized

into 100 ms intervals). To improve randomization (T. T. Liu, Frank,

Wong, & Buxton, 2001; Thomas T. Liu & Frank, 2004), three null trials

(duration: 1800 ms) were included in each block. All trials were dis-

played in a pseudorandomized order specified by a Maximum Length

Sequence (orm-sequence) (Aguirre, 2007; Aguirre,Mattar, &Magis-Wein-

berg, 2011; Buračas & Boynton, 2002) that ensured a counterbalanced

presentation of the 13 trial types (12 conditions +1 null event).

Since the stimulus–response mapping differed between partici-

pants (see Paradigm), before statistical modeling, each trial was rec-

ategorized based on whether that trial required a response with the

left or right index finger (rather than the RDK direction) due to our

focus on action-related processes. With this re-categorization, the

factors defining the 12 conditions of interest were: Hand {Left, Right}

× Coh {CohHigh, CohMed, CohLow} × Mov {MovShort, MovLong}.

2.6 | fMRI data acquisition and preprocessing

Functional and structural MR images were acquired on a 3T MR scan-

ner (Siemens Tim Trio, Erlangen, Germany) using a circularly polarized

(CP) head coil, as part of a simultaneous fMRI-EEG study. Image

preprocessing and statistical analysis were performed with SPM12

(version 6,685) software (Wellcome Centre for Human Neuroimaging,

London, UK) within MATLAB 8.3 R2014a (MathWorks Inc., Natick,

MA) on a Linux operating system (core version 3.16.0-5-amd64,

Debian 8.10 Jessie).

Functional images were measured using a T2*-weighted gradient-

echo planar imaging (EPI) sequence (repetition time (TR): 2200 ms,

echo time (TE): 30 ms, flip angle (FA): 90�, field of view (FoV): 200 mm

× 200 mm). Each volume had 36 slices (ascending series, thickness:

3.0 mm, inter-slice gap: 0.47 mm) with an in-plane resolution of

3.1 mm × 3.1 mm (matrix size: 64 × 64). Additionally, an anatomical

scan was obtained per participant with a T1-weighted magnetization-

prepared rapid gradient echo (MPRAGE) sequence (TR: 2,250 ms, TE:

3.03 ms, FA: 9�, TI: 900 ms, FOV: 256 mm × 245 mm) to obtain a

high-resolution structural image (176 slices, matrix size: 256 × 256,

inter-slice gap: 0.5 mm, voxel size: 1.0 mm × 1.0 mm × 1.0 mm).

For preprocessing and statistical analyses, the acquired images

were converted from the Siemens DICOM format to the NIFTI format

using the dcm2nii utility (version 2013) (Li, Morgan, Ashburner,

Smith, & Rorden, 2016). Functional images (EPIs) were spatially

realigned to the mean EPI image (using second degree B-spline inter-

polation) followed by slice-timing correction (relative to the middle

slice). The mean EPI was then co-registered to the structural image.

Using SPM12's unified segmentation/normalization algorithm, the

structural image was segmented to distinguish white from gray matter

and then warped to match a standard Montreal Neurological Institute

(MNI) template brain image. The deformation fields estimated from

this segmentation/normalization procedure were applied to all EPIs to

transform them into standard MNI space (normalization) followed by

resampling to a voxel size of 2 mm × 2 mm × 2 mm (fourth degree B-

spline interpolation). The normalized EPIs were smoothed with an iso-

tropic 8 mm full-width-at-half-maximum (FWHM) Gaussian kernel.

For statistical analyses involving the explicit estimation of the timing

of the hemodynamic response (see below), a concern was that specific

preprocessing steps, such as the slice-timing correction and smooth-

ing, could distort inter-voxel timing relationships (e.g., Kamitani &

Sawahata, 2010). Therefore, for these time-sensitive analyses, we cre-

ated a duplicate dataset that was preprocessed as described above

but omitted the slice-time correction step and used a smaller smooth-

ing kernel of 6 mm (rather than 8 mm). No unwarping

(e.g., Andersson, Hutton, Ashburner, Turner, & Friston, 2001) was per-

formed on either dataset during preprocessing to minimize potential

distortions of timing information.

Following preprocessing, datasets from three individuals were

excluded from further analysis: one due to technical errors in recording

responses; another due to an incomplete scan due to technical delays;

and one for low overall accuracy (~50%). For all remaining participants,

fewer than 5% of the ~2,600 images acquired (4 runs × ~650 images/

run) were affected by large head movements defined here as a frame-

wise displacement greater than 0.5 mm between consecutive images

(Power, Barnes, Snyder, Schlaggar, & Petersen, 2012) (assessed using

the ArtRepair software [Mazaika, Hoeft, Glover, & Reiss, 2009]).
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2.7 | fMRI statistical analysis

All statistical analyses were conducted within a mass-univariate

framework where the evoked hemodynamic response at each voxel

was independently estimated using a general linear model (GLM). Two

different basis functions were used for the analysis. As with prior

studies, the BOLD effects of the coherence modulation were modeled

using the canonical Hemodynamic Response Function (HRF) basis

(Friston et al., 1998; Josephs, Turner, & Friston, 1997; Worsley &

Friston, 1995) (on the slice-time corrected EPIs). However, to explic-

itly account for the role of timing, the BOLD effects of the MvT mod-

ulation were modeled using the Finite Impulse Response (FIR) basis

function (Boynton, Engel, Glover, & Heeger, 1996; Glover, 1999;

Goutte, Nielsen, & Hansen, 2000; Ollinger, Corbetta, &

Shulman, 2001; Ollinger, Shulman, & Corbetta, 2001) (on EPIs without

slice-time correction). For both basis functions, the trial onset was

defined at the stimulus onset.

• Coherence modulation (canonical HRF basis): To assess the effect of

coherence modulation on perceptual processes that are invariant

to action selection/execution, correct trials with the left and right

index-finger responses were each modeled using a single regressor

(collapsing across the Mov factors) with a parametric regressor to

assess modulation by coherence. For simplicity, parametric modu-

lation was assumed to be linear, and the coherence levels {CohLow,

CohMed, CohHigh} were coded as [+1, 0, −1], respectively

(Philiastides & Sajda, 2007). Since the coherence-calibrated RTs

had a small range (300 ms), trial duration was set to 0 ms.

• Movement time modulation (FIR basis): To identify MvT-related

effects, each of the 12 conditions (i.e., Hand {Left, Right}-

× Coherence {CohLow, CohMed, CohHigh} × Mov {MovShort,

MovLong}) was represented by separate regressors in the GLM. For

each condition, a 24 s period following stimulus onset was

modeled with one regressor (“stick” function) at each of 16 discrete

time points at intervals of 1.5 s. The value of 1.5 s was heuristically

selected to strike a balance between the number of regressors

required per condition while being shorter than the TR (2.2 s).

Independent of the basis function used, all estimated first-level

models shared the following properties. The regressors of interest

only modeled correct trials. Additional regressors of non-interest were

included to account for incorrect trials and the feedback period. The

six head-movement parameters estimated during spatial realignment

(i.e., translation and rotation relative to the X, Y, Z axes) were included

as covariates to account for head-movement effects. To increase sta-

tistical power, images from all runs were concatenated and analyzed

as a continuous time-series in the GLM with additional regressors to

account for inter-run differences. The time-series at each voxel were

high-pass filtered (1/128 Hz) to remove slow trends. First-level model

estimation was restricted to voxels contained within a full-brain mask

estimated during normalization.

For second-level statistical analyses, analyses were restricted to

voxels contained within a functionally defined mask of voxels that

exhibit task-related activity changes. This task-mask consisted of all

voxels where the mean activity on the left and right index finger

response trials (estimated using the canonical HRF basis function) was

significantly greater than zero (second-level t test, p < .05 FWE,

corrected at the voxel level). The boundaries of the task-mask are dis-

played in the visualization of the second-level analyses in Section 3.

Unless noted otherwise, voxel-level activity across the Left/Right con-

ditions was averaged together based on each voxel's lateralized loca-

tion relative to the moving finger, that is, contralateral or ipsilateral.

For all statistical maps, contralateral activity was displayed over the

left hemisphere.

Contrasts were performed at the individual level (i.e., first-level),

and these contrast images (without any additional smoothing) were

used for group (i.e., second-level) statistics. Second-level statistics

were only assessed at voxels contained within the task mask. Due to

our interest in obtaining spatial maps, all second-level statistics

reported here were corrected for multiple comparisons at the thresh-

old of p < .05 FWE cluster-corrected with a cluster-forming threshold

determined at p < .0001 (uncorrected). For exploratory purposes, the

conjunction between activity maps was assessed based on the

minimum-T criterion (Nichols, Brett, Andersson, Wager, &

Poline, 2005). For clarity, statistical tables only report clusters and

peak-coordinates from the contralateral hemisphere.

Statistical maps were rendered on the Conte69 cortical surface

(Van Essen, Glasser, Dierker, Harwell, & Coalson, 2012) using the

Workbench software (wb_command 1.2.2, 2016-07-18; Marcus

et al., 2011).

2.8 | FIR time-series analysis

The first-level model estimation with the FIR basis produced

192 beta images for the 12 conditions (12 conditions × 16 time

points). For computational convenience, the beta-values for each

voxel, time-point, and condition were extracted into a numerical

matrix of size N × T per condition, where N = number of voxels

within the task-mask (~90,000 voxels), and T = number of modeled

time-points.

Even though 16 time points (24 s) were modeled, we restricted

our analysis to a shorter period of T = 9 time points (12 s) to exclude

low amplitude hemodynamic fluctuations at the end of the modeled

period. The shorter 12 s period was selected based on the following

theoretical approximation: The estimated duration of a full trial is

approximately 3 s. Convolving a boxcar function of 3 s duration with

the canonical HRF produces a predicted hemodynamic response with

an amplitude that peaks at ~6.6 s following stimulus onset. By treating

6 s as the approximate mid-point of task-relevant hemodynamic

changes on a given trial, we restricted the subsequent analysis to a

2 × 6 s = 12 s period following stimulus-onset.

These voxel × time beta-value matrices from each condition were

used to analyze the (a) hemodynamic states at each time-point

(i.e., columns of the matrix), and (b) voxel-specific dynamics (i.e., rows

of the matrix).
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2.9 | Hemodynamic state and Euclidean distance

Each column of the voxel × time matrices described above were used

to obtain a snapshot of the instantaneous activity across the brain

(i.e., the hemodynamic state) at each time-point. Specifically, the

instantaneous hemodynamic state at time t (denoted as St) for each

condition was defined as a vector of beta-values St = [β1,t β2,t…βN,t],

where βv,t denotes the beta-value at voxel v at time t (Figure 2a). Each

of the 12 conditions was associated with nine states corresponding to

each of the T time points. Therefore, intercondition differences should

manifest as a difference between the corresponding hemodynamic

states at one or more time-points independent of how the task-

specific networks are organized.

To quantify inter-state differences, we formulated the hemody-

namic states and their relationships in geometric terms (Figure 2b).

The hemodynamic state is treated as a point in a multidimensional

space where each voxel defines one dimension, similar to the typical

formulation used in Multivariate/voxel Pattern Analysis (MVPA)

(Cohen et al., 2017; Haxby, Connolly, & Guntupalli, 2014; Norman,

Polyn, Detre, & Haxby, 2006). The Euclidean distance between two

states was used as a measure of the difference in activity (as indexed

by the beta-values) between those states.

The overall activity level of a particular state St in condition C was

defined as its Euclidean distance to the starting state S0 of that same

condition, namely,

d Stð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
v =1

βv,t – βv,0
� �2

vuut

The relative difference in activity (i.e., Euclidean distance) between

a hemodynamic state in condition Cx (SCxt ) to the corresponding state in

condition Cy at the same time t (SCyt ) was computed as

ΔCt =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
v =1

βCxv,t – β
Cy
v,t

� �2

vuut

As illustrated in Figure 2b, the two states St
Cx and St

Cy are differ-

ent from each other in relative activity (i.e., ΔCt > 0) as voxel j has a

relatively higher activity than voxel i for condition Cx while the oppo-

site is true for Cy. Nevertheless, both states can have the same Euclid-

ean distance to the start state S0 (i.e., d(St
Cx) = d(St

Cy)).

The Euclidean distance between any two states, whether within

or between conditions, was always a single scalar value. All measures

were averaged across responding hand.

2.10 | Peak amplitude and peak time

The hemodynamic changes at each voxel were summarized using two

parameters related to the activity peak, namely, the peak amplitude

and the peak time as described below.

The voxel × time beta-value matrix for each condition (described

above) provided access to the beta time-series at each voxel v for

each condition C, that is, [β1,t β2,t…βN,t]. We qualitatively verified that

the beta time-series at most voxels showed a single-peaked shape

across conditions and participants (as in Figure 2a). This time-series

was summarized with two parameters: the peak amplitude (i.e., the

maximum beta value of the time series), and the peak time (i.e., the

earliest time-point at which the peak amplitude is reached).

For each condition, the peak amplitude (denoted as �βv ) and peak

time at each voxel (denoted as �tv ) were written to the corresponding

voxel location of an empty image having the same dimensions as the

beta images and then smoothed (6mm FWHM). These summary

images were used to calculate intercondition contrasts in peak ampli-

tudes and peak times per individual, and these contrast images were

statistically evaluated at the group level.

F IGURE 2 Hemodynamic states. (a) The beta-values at all analyzed voxels at time t define the hemodynamic state St (shaded box). For
illustration, beta values at a subset of voxels are shown where each line corresponds to the beta-values at one voxel. The thick line is an example
of beta-values at the voxel marked in the inset. (b) Geometric representation of the hemodynamic state St (solid black dot) as a point in an n-
dimensional space where each voxel defines one dimension, here shown for two voxels. The sequence of coordinates (i.e., states) occupied over
time for each condition is shown as a directed curve (dark gray for condition Cx, light gray for condition Cy)
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2.11 | Normalized difference in peak amplitude
and peak time

To assess the relative magnitude of intercondition differences in peak

amplitude/time across different voxels, these differences were nor-

malized similar to the coefficient of variation (i.e., [SD]/mean). The

normalized difference of the peak amplitude and peak time differ-

ences between conditions Cx and Cy at voxel v (i.e.,�β
Cx
v −�β

Cy
v and

�tCxv −�tCyv ) was defined as follows and expressed as a percentage

ρβ =100×
�β
Cx
v −�β

Cy
v

�β
Cx
v + �β

Cy
v

and ρt =100×
�tCxv −�tCyv
�tCxv +�tCyv

These values were computed at the first level using the peak

amplitude and peak time summary images described above.

2.12 | M1 region of interest

An M1 region of interest was defined using a combination of func-

tional and anatomical criteria. A variant of the coherence-modulation

model was used to define M1 functionally. The correct trials produced

with the left and right index fingers were modeled as separate regres-

sors with a corresponding parametric regressor to account for

movement-time effects, namely, MovShort and MovLong (collapsed

across all coherence levels). To functionally identify M1 for each

hemisphere, the set of all voxels where the parametric modulation

showed a significant parametric increase for the contralateral index

finger responses (second-level t test, p < .05 FWE, corrected at the

voxel level) was identified. These voxels were then masked with the

Human Motor Area Template (HMAT) atlas (Mayka, Corcos, Leu-

rgans, & Vaillancourt, 2006). The coordinate of the local maximum

within this masked area that was closest to (a) the “hand-knob forma-

tion” at the precentral gyrus (Yousry, 1997) and (b) functionally identi-

fied coordinates for finger tapping (based on the meta-analysis by

Witt, Laird, & Meyerand, 2008) was defined as the reference coordi-

nate for M1 in each hemisphere (MNI coordinates for right M1:

[34–22 60], left M1: [−38–22 62]). A sphere of 4 mm radius

(33 voxels) centered at these coordinates was defined as the M1

region of interest.

3 | RESULTS

3.1 | Behavioral validation

Our experiment was designed to modulate (a) response times by vary-

ing the motion coherence of the RDK stimuli, and (b) movement times

by varying the number of button-presses (Figure 1b).

Consistent with this first goal, increasing coherence was accom-

panied with a systematic decrease in the mean RT (CohLow:

899 ± 8 ms; CohMed: 836 ± 5 ms; CohHigh: 750 ± 11 ms)

(mean ± within-subject SEM) [ANOVA, F(2,58) = 75.19, p < .0001].

There was also a systematic increase in the mean accuracy of the

decisions with increasing coherence (CohLow: 79.35 ± 0.97%; CohMed:

87.91 ± 0.56%; CohHigh: 93.76 ± 1.02%) [ANOVA, F(2,58) = 68.74,

p < .0001].

Consistent with the goal of modulating movement time (MvT),

the mean time (averaged across hands) to execute 3 button-presses

(MovShort) (542 ± 13 ms) was smaller than to execute 8 button-

presses (MovLong)(1,496 ± 13 ms) [paired t(29) = 36.38, p < .0001].

These behavioral differences were a pre-condition to evaluate

the readout of the corresponding neural dynamics in the BOLD signal.

3.2 | Response time and movement time have
dissociable hemodynamic effects

To read out response-locked neural activity in the BOLD activity, the

independent modulation of RT and MvT at the neural level should

have dissociable effects on the hemodynamic responses. In our para-

digm, the RDK coherence modulated the RT (i.e., the time from the

stimulus to the first button press) before the MoveOff stimulus could

influence the MvT (i.e., the time between the first and last button-

press). These sequential effects predicted an asymmetry relative to

the stimulus onset. The timing of the neural activity differences

between the conditions <CohLow, Movx> and <CohHigh, Movx> should

be unaffected by whether Movx was equal to MovShort or MovLong.

However, the neural differences between the conditions <Cohx,

MovLong> and <Cohx, MovShort> should occur later when Cohx was

equal to CohLow (i.e., high RT) rather than CohHigh (i.e., low RT). We

tested whether this predicted asymmetry was detectable in the hemo-

dynamic states constructed from the beta-value time-series estimated

with the FIR basis function (see Figure 2, Section 2).

Figure 3a shows the Euclidean distance between the time-

resolved states for <Cohx, MovShort> and <Cohx, MovLong> (denoted

as ΔMov) for each of the three possible values of Cohx (i.e., CohLow,

CohMed, CohHigh). Coherence robustly modulated the magnitude of

ΔMov with a weaker modulation of ΔMov timing (ANOVA, Coh

{CohLow, CohMed, CohHigh} × time {8 time bins}; Coh*Time:

F(14,406) = 1.73, p = .048; Coh: F(2,58) = 10.46, p = .0001; Time:

F(7,203) = 32.52, p < .0001).

The corresponding modulatory relationship was absent for the

mean pair-wise Euclidean distance between the states for CohLow,

CohMed, and CohHigh (denoted as ΔCoh) for each Mov level

(Figure 3b). ΔCoh for MovShort and for MovLong steadily increased

over the entire modeled period but was not modulated by the Mov

level (ANOVA, Mov {MovShort, MovLong} × Time {8 time bins};

Mov*Time: F(7,203) = 0.39, p = .91; Mov: F(1,29) = 2.26, p = .14; Time:

F(7,203) = 15.39, p < .0001).

Furthermore, the manner in which ΔMov changed over time

(i.e., with a single peak when averaged across Coh levels) was robustly

different from how ΔCoh changed over time (i.e., steadily increasing

when averaged across Mov levels) (ANOVA, Modulation {ΔCoh,

ΔMov} × Time {8 time bins}; Modulation*Time: F(7,203) = 33.285,

p < .0001; Modulation: F(1,29) = 54.05, p < .00001; Time: F(7,203) = 25.85,

VISWANATHAN ET AL. 3427



p < .00001). Taken together, these findings (i.e., Coh modulated ΔMov

but Mov did not modulate ΔCoh) confirmed the asymmetric relationship

between Coh and Mov predicted by their sequential effects.

To clarify whether the observed asymmetry of the Coh/Mov

relationships was indeed linked to differences in the timing of neural

activations, we assessed a measure of overall activity that ignored

inter-voxel timing differences, namely, the Euclidean distance of each

state to the start state S0. With this measure, a simple prediction was

that the overall activity for <CohLow, Movx> (i.e., high RT) would be

shifted later in time as compared to <CohHigh, Movx> (i.e., low RT),

irrespective of whether Movx was MovShort or MovLong. For all Coh ×

Mov combinations (Figure 3c), there was a sharp initial increase in

overall activity (relative to S0) followed by a subsequent decrease. For

all coherence levels, MovLong was associated with a greater overall

activity than MovShort. However, this influence of Mov was not modu-

lated by coherence contrary to the above prediction. Specifically, the

statistical interaction of Mov and Coh was not significant in a 3-way

ANOVA with factors Coh {CohLow, CohMed, CohHigh} × Mov {MovShort,

MovLong} × Time {8 time bins (excluding to)} (Coh*Mov*Time:

F(14,406) = 0.67, p = .80; Coh*Mov: F(2,58) = 0.84, p = .44; Coh*Time:

F(14,406) = 3.98, p < .0001; Mov*Time: F(7,203) = 59.34, p < .0001; Mov:

F(1,29) = 175.41, p < .0001; Coh: F(2,58) = 23.38, p < .0001; Time:

F(7,203) = 137.86, p < .0001).

In summary, the time-resolution of the BOLD signal was sufficient

to detect neural differences at the time scales of our paradigm even

without distinguishing between the functional networks modulated

by stimulus coherence (Coh) and by the number of button-presses

(Mov). However, the timing differences linked to the Coh/Mov

F IGURE 3 Intercondition state differences. (a) Mean Euclidean distance between <Cohx, MovLong> and <Cohx, MovShort> for each value of
Cohx indicated as ΔMov(Cohx) (error bars are within-subject standard error of the mean [Morey, 2008]). (b) Mean pair-wise Euclidean distance
between <Cohx, MovA> and <Cohy, MovA> for different values of Cohx and Cohy when MovA = MovShort (green line) and when MovA = MovLong
(magenta line). The gray line indicates the mean value of ΔMov (from panel (a)) averaged across all coherence values. (c) Mean Euclidean distance
to the start state S0 for all <Coh, Mov> combinations
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relationships were only evident in multivariate inter-voxel compari-

sons and not by measures of overall activity relative to S0 (see

Figure 2). We next turned to map the spatial locations of these

response-locked differences.

3.3 | Mapping response-locked activity reveals
functional distinctions

The readout of the response-locked neural differences between

<Cohx, MovShort> and <Cohx, MovLong> in the stimulus-locked BOLD

signal could take different forms across the brain. For example, the

mean BOLD activity for <CohLow, MovLong> was significantly greater

than zero over a longer period (until 7.5 s) than for <CohLow,

MovShort> (until 6 s) at several voxels (Figure 4a). Nevertheless, the

activity profiles at these voxels could differ from each other,

depending on their functional origin (Ploran et al., 2007). In our para-

digm, a basic functional difference between <Cohx, MovShort> and

<Cohx, MovLong> was related to movement production (i.e., 3 versus

8 button-presses). Therefore, we used the activity profile at the pri-

mary motor cortex (M1) as a template to map the potential functional

origin of the response-locked differences.

Across <Coh, Mov> conditions, the activity at M1 contralateral to

the responding hand (Figure 4b) was robustly modulated by Mov

(i.e., Mov*Time) and coherence did not modulate this relationship

(Mov*Coh*Time) (3 way-ANOVA, Mov {MovShort, MovLong} × Coh

{CohLow, CohMed, CohHigh} × Time {9 time-bins}; Mov*Coh*Time:

F(16,464) = 0.65, p = .84; Mov*Time: F(8,232) = 54.10, p < .0001;

Coh*Time: F(16,464) = 3.79, p < .0001; Mov*Coh: F(2,58) = 0.86, p = .43;

Mov: F(1,29) = 55.88, p < .0001; Coh: F(2,58) = 2.08, p = .13; Time:

F(8,232) = 86.33, p < .0001). Consistent with the additive effect of

repetitive button presses, the peak beta-value for MovLong (8 button

F IGURE 4 Mapping movement time. (a) Distribution of voxels showing statistically significant activity increases following movement onset
for <CohLow, MovShort> (upper panel) and <CohLow, MovLong > (lower panel) (p < .05, voxel-wise FWE). The area between horizontal lines
indicates the approximate location of the motor/somatosensory cortex. (b) Activity over time for different <Coh, Mov> combinations at

contralateral M1 (dark lines with filled dots, magenta and green), and ipsilateral M1 averaged over coherence values (light lines/open dots). Across
coherence values, the peak amplitude for MovLong was higher than for MovShort and was also reached at a later time. (c) Map of voxels over
contralateral hemisphere where peak activity for MovLong was significantly greater than for MovShort in peak amplitude (left column) and in peak
time (right column) (p < .05, FWE-cluster corrected, cluster-forming threshold for peak amplitude = 52 voxels, for peak time = 41 voxels). Colors
indicate normalized differences in peak amplitude/time at these voxels. (d) Relationship between maps of movement-related peak amplitude
(green) and peak time (magenta) differences. The maps show considerable overlap (yellow) [minimum cluster size = 41 voxels] but also
considerable nonoverlapping regions
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presses) was larger and occurred later (relative to stimulus onset) than

for MovShort (3 button presses). This peak-based pattern of differ-

ences was used as a functional template.

Activity at a voxel was categorized as being “like M1”

(i.e., potentially having a movement-related origin) if the peak ampli-

tude and peak time for <Cohx, MovLong> were significantly greater

than for <Cohx, MovShort> (averaged across Coh levels). Voxels that

satisfied only the peak amplitude criterion or only the peak time crite-

rion were categorized as being “unlike M1” (i.e., having a non-

movement origin). Due to the low activity at ipsilateral M1

(Figure 4b), which was expected given the relative simplicity of the

required unilateral responses, we restricted our subsequent analyses

to the contralateral hemisphere.

The peak amplitude criterion and the peak time criterion were

each satisfied over an extensive set of regions (Figure 4c, Tables S1

and S2). More voxels satisfied the peak amplitude criterion (Figure 4c,

left panel) than the peak time criterion (Figure 4c, right panel). Fur-

thermore, the maximum normalized difference in peak amplitude

(~15%) was more than twice the corresponding maximum for peak

time (~6%). Large normalized differences in peak amplitude and in

peak time were concentrated over M1, S1, and the occipital cortex.

The (binary) maps specific to the peak amplitude and the peak

time criteria were overlaid to identify voxels based on the like/unlike-

M1 categorization rule (Figure 4d, Table 1). The overlap of the peak

amplitude and peak time maps (yellow areas) included M1, S1, and S2

with additional overlaps at the occipital cortex. Notably, several

regions were unlike M1. Only the peak amplitude criterion (green

areas) was satisfied at caudal SMA, anterior ventral premotor cortex

(prePMV) in the vicinity of area 44/45, posterior insula, and cingulate

gyrus. Despite the poor time resolution of the hemodynamic signal,

regions that met the peak time criterion (magenta areas) were not

strictly a subset of regions satisfying the peak amplitude criterion.

There were large clusters over preSMA where only the peak time cri-

terion was satisfied.

In summary, irrespective of functional origin, the activity differ-

ences revealed by the map in Figure 4d meet the definition of being

response-locked, namely, they followed after the first button-press.

Applying a “like/unlike-M1” functional template to these response-

locked differences revealed that several regions had an activity profile

like M1 (as expected), but several regions had an activity profile that

was unlike M1 in different ways. To clarify these functional distinc-

tions revealed by response-locking, we next compared it to a conven-

tional stimulus-locked view of these data.

3.4 | Stimulus-locked activity: Coherence-
modulated networks

Coherence-modulated activity relative to the stimulus onset was esti-

mated using the canonical HRF basis function. When averaged across

TABLE 1 Overlap peak amplitude and peak time maps (contralateral hemisphere)

Cluster size

Peaks

x y z T value Anatomical region Location (BA)

8,069 −24 −90 −6 16.58 Inferior occipital gyrus hOc3v [V3v] (19)

−12 −98 2 13.14 Middle occipital gyrus hOc1 [V1] (17)

−32 −72 −10 11.33 Fusiform gyrus FG1/hOc4v [V4(v)] (37)

−34 −86 8 8.98 Middle occipital gyrus hOc4lp/hOc4la (19)

−44 −64 0 8.81 Middle temporal gyrus hOc5 [V5/MT] (37)

−24 −96 20 7.67 Superior occipital gyrus hOc3d [V3d]/hOc4d [V3A] (19)

−36 −56 −20 7.32 Fusiform gyrus FG2 (37)

−28 −78 22 5.58 Middle occipital gyrus (19)

3,164 −40 −18 50 16.04 Precentral gyrus M1 (4a/4p, 3)

−34 −24 68 11.78 Precentral gyrus M1 (4)

−50 −16 18 9.83 Postcentral gyrus OP3 [VS]/OP4 [PV] (41)

−42 −34 48 7.13 Postcentral gyrus (2/3b)

−60 −34 22 5.75 Superior temporal gyrus PFcm (IPL)/PF/IPL (40)

−34 −24 18 4.88 Insula lobe OP2 [PIVC]/Ig1 (OP2)

−58 −26 40 4.55 Supramarginal gyrus PFt (IPL)/2 (40)

509 −6 −2 56 11.5 Dorsal medial frontal cortex SMA/preSMA (6)

366 −12 −16 8 9.71 Thalamus Thal: Prefrontal/Thal: Temporal

237 −56 2 2 8.15 Frontal operculum TE (3)/TE (1.2)

−58 10 28 6.85 Precentral gyrus vPMC (44/45, 6)

Note: Clusters identified at a threshold of p < .05 (FWE, cluster-corrected), cluster threshold = 41 voxels (p < .0001 uncorr.). Peak locations are in MNI

coordinates (min distance between intra-cluster peaks = 16 mm). Numbers in parentheses in the last column indicate the Brodmann area (BA).
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Mov levels and responding hand, changes in stimulus coherence mod-

ulated activity negatively in some regions and positively in others

(Figure 5a upper, Tables 2 and 3). Since stimulus identification pre-

cedes action selection, the modulation is displayed without flipping

the data relative to the responding hand. Parametric decreases in

coherence (i.e., increases in RT) were associated with a reduction in

mean activity (i.e., negative modulation) at the left dorsolateral pre-

frontal cortex (dLPFC), bilateral angular/supramarginal gyrus,

precuneus, and the thalamus. However, coherence decreases were

associated with increased activity (i.e., positive modulation) at multiple

occipital and posterior parietal regions, at the cingulo-opercular

regions (middle cingulate cortex, anterior insula bilaterally), and bilat-

eral precentral/inferior frontal gyrus rostral to the ventral premotor

cortex (prePMV), SMA, and pre-SMA.

Even though the stimulus-locked and response-locked activity

maps were estimated with different basis functions, for exploratory

purposes, we compared them to assess if the hypothesized increase in

sensitivity with response-locking revealed any additional information

about the stimulus-locked effects. For this comparison, the functional

activity estimates for the left−/right-hand responses were converted

to a contralateral/ipsilateral reference (Figure 5a, lower). Furthermore,

we focused only on regions showing increased activity with increasing

RT (i.e., positive modulation) to allow comparison with regions catego-

rized based on response-locked increases in peak-amplitude/time

with increasing MvT. Binary maps of these positively-modulated

regions were overlaid with the peak amplitude and peak time maps, as

shown in Figure 5b (Table 4).

Surprisingly, the stimulus-locked map showed an overlap with

both response-locked maps only at the occipital cortex. No other

region with a response-locked activity profile that was “like-M1”

(e.g., M1, S1, and S2) had an overlap with the stimulus-locked maps.

However, the overlaps of the stimulus-locked maps with the

“unlike-M1” regions on the response-locked maps revealed a sur-

prising lateral/medial dissociation. On the lateral cortex, there was

an overlap with the peak amplitude map at prePMV (Figure 5b, left

panel) that was absent with the peak time map. On the medial cor-

tex, there was an overlap with the peak time map at preSMA

(Figure 5b, right panel) that was absent with the peak amplitude

map. This was especially notable as large adjacent clusters in the

caudal SMA and cingulate gyrus in the peak amplitude map showed

no overlap with the stimulus-locked maps. The prominent clusters

in the anterior insula and dorsal anterior cingulate cortex (dACC)

on the stimulus-locked maps did not overlap with either of the

response-locked maps.

Thus, regions that were categorized as having a similar stimulus-

locked activity modulation (i.e., increasing with RT) nevertheless

exhibited dissociations when their response-locked activity profiles

were analyzed. Importantly, none of these overlaps, whether at the

prePMV or preSMA, were at regions with activity profiles indicating

involvement in movement-generation, that is, like M1. Taken

F IGURE 5 Stimulus-modulation. (a) Map of voxels showing significant modulation with a change in stimulus coherence (p < .05, FWE-cluster
corrected, cluster-forming threshold identified at p < .0001, uncorrected). Regions shown in red show significant positive modulation, namely,
increases with increasing RT (or decreasing coherence [see inset]) while regions in blue show significant negative modulation, namely, reductions
in activity with decreasing RT (i.e., increasing coherence). (b) Relationship between coherence-modulated regions (positive modulation) and
(i) peak amplitude map (left column) and (ii) peak time (right column). Overlaps (yellow) have a minimum cluster size of 41 voxels
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together, these findings are evidence in support of the increased sen-

sitivity predicted from complementing a stimulus-referenced perspec-

tive with a response-referenced perspective, even with the relatively

low time-resolution of fMRI.

4 | DISCUSSION

Our strategy here was to use the response protocol in order to read

out response-locked neural effects from the BOLD signal. Multiple

lines of evidence suggest that the response protocol achieved this

goal. First, we found evidence consistent with an asymmetric

sequential relationship between RT and MvT on the hemodynamic

state (Figure 3a,b). Second, there was a robust difference in the peak

amplitude and peak timing of BOLD activity at the primary motor

cortex and somatosensory cortex, consistent with the response-

locked differences between MovShort and MovLong in the duration

and number of executed movements (Figure 4). There were also

strong differences over the occipital cortex consistent with the

differences in stimulus display duration between MovShort and

MovLong.

The response protocol itself did not disrupt the stimulus-related

properties of the perceptual decision task. First, the distribution of posi-

tive/negative activity modulation with coherence was consistent with

prior studies (H R Heekeren et al., 2006; Ho, Brown, & Serences, 2009;

Krueger et al., 2017; T. Liu & Pleskac, 2011; Nee & D'Esposito, 2016;

Wheeler et al., 2015), especially the study of Heekeren, Marrett,

Bandettini, and Ungerleider (2004) that emphasized the role of the

dLPFC (Figure 5a). Second, a fundamental property worth emphasizing

is that the response protocol enabled the measurement of a behavioral

TABLE 2 Coherence positive modulation (contralateral hemisphere)

Cluster size

Peaks

x y z T value Anatomical region Location (BA)

276 −46 2 32 7.86 Precentral gyrus prePMV (44, 6)

1,309 −26 −84 14 7.69 Middle occipital gyrus hOc4lp (19)

−26 −88 −10 6.92 Inferior occipital gyrus hOc4v [V4(v)]/hOc3v [V3v] (19)

−14 −100 −2 5.63 Calcarine gyrus hOc1 [V1]/hOc2 [V2] (17)

−22 −66 38 5.26 Superior occipital gyrus hIP3 (IPS) (7)

−28 −74 0 5.22 Fusiform gyrus FG1 (19)

802 −6 10 50 7.43 Dorsal medial frontal cortex preSMA (6)

−8 24 30 6.16 Anterior cingulate cortex aMCCd (24)

336 −28 26 0 7.18 Insula lobe

−42 16 6 5.51 Insula lobe (44)

126 −30 −2 72 5.78 Precentral gyrus dPMC (6)

Note: Clusters were identified at a threshold of p < .05 (FWE, cluster-corrected), cluster threshold = 92 voxels (p < .0001 uncorr.). Peak locations are in

MNI coordinates (min distance between intracluster peaks = 16 mm). Numbers in parentheses in the last column indicate the Brodmann area (BA).

TABLE 3 Coherence negative modulation (contralateral hemisphere)

Cluster size

Peaks

x y z T value Anatomical region Location (BA)

242 −20 26 50 6.34 Middle frontal gyrus DPLFC(8)

50 −22 4 −10 6.18 Putamen

327 −54 −62 36 6.02 Angular gyrus PGa (IPL)/PFm (IPL) (40)

245 −14 −48 34 5.87 MCC/precuneus (31)

56 −16 56 12 5.11 Superior frontal gyrus Fp1 (10)

242 −20 26 50 6.34 Middle frontal gyrus DPLFC (8)

50 −22 4 −10 6.18 Putamen

327 −54 −62 36 6.02 Angular gyrus PGa (IPL)/PFm (IPL) (40)

245 −14 −48 34 5.87 MCC/precuneus (31)

56 −16 56 12 5.11 Superior frontal gyrus Fp1 (10)

Note: Clusters were identified at a threshold of p < .05 (FWE, cluster-corrected), cluster threshold = 50 voxels (p < .0001 uncorr.). Peak locations are in

MNI coordinates (min distance between intracluster peaks = 16 mm). Numbers in parentheses in the last column indicate the Brodmann area (BA).
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RT in the same manner as a traditional response protocol involving a sin-

gle button press. For instance, in prior studies, a common strategy to

isolate pre-movement information-processing stages from action execu-

tion was to use separate stimuli to provide information about stimulus

identity and to command action execution (Filimon et al., 2013;

Gold & Shadlen, 2007; Hebart, Donner, & Haynes, 2012; Schouten &

Bekker, 1967). Although this “forced” RT strategy (Schouten &

Bekker, 1967) provides greater experimental control over the timing of

an action, this approach also disrupts the dynamic transformation of the

stimulus into an action that response-locking seeks to access. The avail-

ability of behavioral RT with our response protocol provides a common

ground truth to integrate findings from fMRI with findings from mat-

ched paradigms using high time-resolution techniques such as EEG

and MEG.

We next turn to the question of whether this response protocol

revealed any new information about the underlying cognitive compu-

tations that might otherwise not be available from a stimulus-locked

perspective.

4.1 | Functional dissociations in perceptual
decision-making

In our paradigm, increasing perceptual difficulty (with decreasing

coherence) led to increases in stimulus-locked activity over the lat-

eral/medial prefrontal cortex (including the anterior cingulate cortex,

preSMA, and prePMV) and the anterior insula (Figure 5a). Although

several studies have reported this modulation, their underlying com-

putational function to date remains elusive (Filimon et al., 2013;

Gold & Shadlen, 2007; Hebart et al., 2012; Ploran et al., 2007; Thura &

Cisek, 2014). For instance, it is unclear if they are associated with

distinct functions. The response-locked perspective reveals a dissocia-

tion between these regions (Figure 5b).

First, the anterior insula (aIns) and anterior cingulate cortex (ACC)

did not show any measurable response-locked modulations, unlike the

preSMA and prePMV. The inclusion of timing revealed a further disso-

ciation. The response-locked activity at preSMA showed a modulation

in timing but not in amplitude while the prePMV showed the opposite

pattern. These dissociations implicate differential roles of prePMV,

preSMA, and the aIns-ACC during perceptual decision-making.

The dissociation between the preSMA and prePMV provides a cru-

cial validation of the value of timing information. For example, with the

canonical HRF basis function, the typical activity difference of interest

pertains to changes in the amplitude of the hemodynamic response

between experimental conditions. Following this tradition, consider the

counterfactual scenario where a significant difference in peak ampli-

tude alone was the sole criterion to identify regions showing response-

locked activity differences. Based solely on this criterion, a broad set of

regions consistent with Figure 4c (left panel) would show activity dif-

ferences. Furthermore, the overlap with the coherence-modulated

regions would have solely been at prePMV (Figure 5b, left panel). How-

ever, including a timing-based criterion revealed the existence of an

additional overlap with preSMA (Figure 5b, right panel). It might be that

the peak time modulation was detected at fewer voxels than the peak

amplitude modulation merely due to the low sampling frequency with

fMRI (here, TR = 2,200 ms). If this were the case, then the peak time

map would be a strict subset of the peak amplitude map. However, this

prediction was violated most notably at the preSMA, where there was

no measurable difference in peak amplitude.

The properties of the paradigm provide certain constraints for

interpreting this putative functional dissociation. When the response

is treated as the reference event, it is not solely an output (relative to

TABLE 4 Overlap (contralateral hemisphere)

Cluster size

Peaks

x y z T value Anatomical region Location (BA)

Amplitude and coherence

1,201 −24 −88 −6 8.56 Inferior occipital gyrus hOc3v [V3v]/hOc4v [V4(v)] (19)

−28 −84 16 7.22 Middle occipital gyrus hOc4lp (19)

−28 −70 −10 7.15 Fusiform gyrus FG1/hOc4v [V4(v)] (37)

−12 −100 0 6.4 Middle occipital gyrus hOc1 [V1]/hOc2 [V2] (17)

83 −48 2 32 5.57 Precentral gyrus prePMV (44, 6)

Time and coherence

1,115 −24 −88 −6 8.56 Inferior occipital gyrus hOc3v [V3v]/hOc4v [V4(v)] (19)

−16 −100 4 6.39 Middle occipital gyrus hOc3d [V3d]/hOc2 [V2] (18)

−30 −72 −8 5.86 Fusiform gyrus FG1/hOc4v [V4(v)] (19)

−26 −96 20 5.02 Middle occipital gyrus hOc4d [V3A]/hOc3d [V3d] (19)

149 −8 12 56 5.29 Dorsal medial frontal cortex SMA/preSMA (6)

Note: Clusters were identified at a threshold of p < .05 (FWE, cluster-corrected), cluster threshold = 41 voxels (p < .0001 uncorr.). Peak locations are in

MNI coordinates (min distance between intracluster peaks = 16 mm). Numbers in parentheses in the last column indicate the Brodmann area (BA).
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a stimulus input) but a transition point from cognitive choice to move-

ment. It is worth considering the two sides of this transition.

4.2 | The response-locked view of perceptual
decisions

If a region has a function that operates continuously from the first

button press until the end of the trial for both MovShort and MovLong,

then the integrative form of the hemodynamic response function

(i.e., a convolution of the HRF with the activation duration) would pre-

dict that the BOLD signal has a higher peak amplitude and peak time

for MovLong than for MovShort (i.e., like M1). This functional demand

would be met, for example, by the sensorimotor networks involved in

executing individual finger presses and also by the processes involved

in monitoring the visual display for the MoveOff stimulus. However,

the neural processes triggered by the detection of the MoveOff stim-

ulus (such as processes to inhibit the ongoing movements and reward

signals linked to trial completion) only have a brief role at the end of

the movement period. Therefore, the corresponding BOLD response

evoked by this brief terminating event might have a similar amplitude

for MovShort and MovLong but with a peak time that is relatively earlier

for MovShort than for MovLong (Gratton et al., 2017; R. S. Menon

et al., 1998; Ploran et al., 2007).

Remarkably, none of the coherence-modulated regions (except the

occipital cortex) had an activity profile modulating both peak amplitude

and peak time. Studies on humans and non-human primates have shown

that planning, preparation, and selection of actions can be engaged dur-

ing perceptual decision-making (Donner et al., 2009; Filimon et al., 2013;

Gold & Shadlen, 2007; H. R. Heekeren et al., 2006; Hauke R. Heekeren

et al., 2008; Resulaj et al., 2009; Tosoni et al., 2014; Tosoni et al., 2008).

However, the planning of action can occur at many levels of abstraction.

One interpretation of movement preparation is that it involves sub-

threshold activation of motor representations that are then activated

during movement execution, that is, “raise-to-threshold” preparation

(Erlhagen & Schöner, 2002; Thura, Beauregard-Racine, Fradet, &

Cisek, 2012; Thura & Cisek, 2014). Such representations might be

expected to exhibit activity consistent with the “like M1” template. Con-

trary to this latter possibility, we found no evidence that motor repre-

sentations of the kind involved in executing an action were active and

modulated by RT or stimulus coherence during perceptual decision-

making.

Even though none of the coherence-modulated regions seemed to

have a movement-related origin, the activity profile at preSMA was con-

sistent with a process triggered by the MoveOff stimulus, namely, a

marker of the end of the trial (see above). This result is consistent with

the preSMA's previously reported role in context monitoring, sequenc-

ing, and task control (Hikosaka & Isoda, 2010; Isoda & Hikosaka, 2007;

Nachev, Kennard, & Husain, 2008; Shima & Tanji, 2011) and suggests

that the preSMA might have a similar function in the transformation of

a stimulus to a response. The preSMA might monitor the start of the

response or, possibly, the switch from a perceptually oriented sub-task

(namely, decoding the stimulus) to the demands of action execution.

4.3 | The stimulus-locked view of perceptual
decisions

In general, to calculate the RT, a “response” marks the earliest time fol-

lowing the stimulus at which the execution of a task-relevant action can

be detected (e.g., a button press. However, this instantaneous binary

event is an impoverished description of the actual movement, which

takes place over an extended time involving changes in multiple

effector-specific kinematic variables (e.g., velocity, acceleration, forces)

(Shenoy, Sahani, & Churchland, 2013; Viswanathan et al., 2019). Typi-

cally, these movements are deemed irrelevant to the stimulus-to-

response transformation for at least two reasons. First, since the

response event marks the commitment to a choice, it is assumed that

any processes that follow can no longer influence how this choice came

to be made (McKinstry, Dale, & Spivey, 2008; but see Spivey, Grosjean, &

Knoblich, 2005). Second, a perceptual decision follows from a judgment

about a stimulus. Hence, stimulus-dependent RT changes are assumed

to indicate delays in reaching this perceptual decision rather than in exe-

cuting the subsequent action (Ratcliff & Rouder, 1998).

In the current paradigm, there are two buttons, and each button

is associated with a different effector, that is, the left and the right

index finger. Therefore, the first press of a button fully specified the

choice and further presses of that same button do not provide added

information about the choice and cannot change the choice. Many of

the processes that are functionally involved in reaching the decision,

that is, that cause the RT differences to vary with stimulus coherence,

or with the immediate consequences of choosing might no longer

have a function following the onset of the response.

The anterior insula and the dorsal anterior cingulate cortex have

been found to be co-activated in numerous paradigms and are

referred to as being part of a salience network (Medford &

Critchley, 2010; V. Menon & Uddin, 2010). The salience network has

been hypothesized to be engaged in cognitive control among a variety

of functions. Even though the repeated and rapid movements

required by the protocol requires cognitive control and appropriate

resources, the absence of a modulation of the salience network may

suggest that this network has a role in monitoring the choice with a

limited role after the choice leads to the initiation of the

corresponding action.

Along similar lines, the prePMV may indicate the delayed offset

of neural activity from the perceptual decision. We hypothesize that

prePMV might indicate the continued integration of the decision-evi-

dence, even though an action has been selected (Rabbitt &

Vyas, 1981; Resulaj et al., 2009; Selen, Shadlen, & Wolpert, 2012).

The integration continues longer than MovShort but less than MovLong,

so time differences are less evident even though small amplitude dif-

ferences are present.

4.4 | An integrated view

When studying the transformation of a stimulus into action, a tradi-

tional representation of the information processing stages is with a
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series of boxes and arrows, where the arrows represent the ordinal

flow of information while the boxes represent hypothetical processors

of this information. For instance, a classic model for how perceptual

decisions inform action selection is via a processing sequence repre-

sented with boxes/arrows: sensory processing, perceptual identifica-

tion, response selection, and response execution (Figure 6a). These

processors perform a transformation, for example, of a stimulus' sen-

sory representation into its identity, or the stimulus identity into an

action choice. This is especially crucial for arbitrary stimulus–response

mappings where there are two instructed decisions: a decision about

the identity of the stimulus (based on an instruction specifying the

stimulus features to be evaluated) and a decision about the action to

select based on an instructed mapping of stimulus identity to a

corresponding response. However, this box-arrow representation is

deceptive about the relative timing of the onset/offset of this

processing activity.

When we consider time as a cardinal variable, the well-ordered

transition between consecutive stages is difficult to identify due to

the unclear onset/offset of activity in brain regions and their roles

within these networks. Here we propose an adjustment that allows

this box-arrow representation to be interpreted relative to cardinal

time (for a similar formulation obtained by integrating fMRI-EEG

acquired simultaneously see [Muraskin et al., 2018]). In Figure 6b, the

sequence of processing stages remains. However, an essential modifi-

cation is to the onset and offset of the processing-related stages.

Information might pass from stage X to the next stage Y at a specific

time (indicated by the arrows), but the hypothetical “processor” that

implements stage X might nevertheless continue to be active (i.e., the

length of a box along the time dimension). As a consequence, the neu-

ral implementations of certain processing stages might seemingly

appear over extended periods. Two regions A and B that are co-active

at a particular time might belong to different functional networks that

operate at different times, but the delayed offset of region A and the

early onset of region B might lead to a misattribution that they are

involved in performing the same computation. Therefore, a perspec-

tive that integrates the stimulus-locked and response-locked perspec-

tives is crucial to disentangle not only the onset of a cognitive sub-

process but also its offset.

5 | CONCLUSION

Despite the comparatively low time-resolution of fMRI, our findings

demonstrate that the choice of reference point has a measurable

influence on the sensitivity of measuring timing information with

fMRI, much like other high time-resolution modalities. The novel

response protocol introduced here to implement response-locking

involves a minimal change to the typical experimental paradigms that

present a stimulus and collect a button press. As demonstrated with a

well-studied perceptual decision-making task, the increased sensitivity

afforded by this small change in response protocol suggests a promis-

ing avenue for future research and application to other tasks.
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