000875303 001__ 875303
000875303 005__ 20250701125857.0
000875303 0247_ $$2doi$$a10.1016/j.ceramint.2019.10.221
000875303 0247_ $$2ISSN$$a0272-8842
000875303 0247_ $$2ISSN$$a0392-2960
000875303 0247_ $$2Handle$$a2128/24842
000875303 0247_ $$2WOS$$aWOS:000512219600098
000875303 037__ $$aFZJ-2020-01934
000875303 082__ $$a670
000875303 1001_ $$0P:(DE-Juel1)171261$$aFakouri Hasanabadi, M.$$b0
000875303 245__ $$aFinite element optimization of sample geometry for measuring the torsional shear strength of glass/metal joints
000875303 260__ $$aFaenza$$bCeramurgia73399$$c2020
000875303 3367_ $$2DRIVER$$aarticle
000875303 3367_ $$2DataCite$$aOutput Types/Journal article
000875303 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1589205690_17234
000875303 3367_ $$2BibTeX$$aARTICLE
000875303 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000875303 3367_ $$00$$2EndNote$$aJournal Article
000875303 520__ $$aAssessment of mechanical properties of glass/metal joints is a challenging process, especially when the application relevant conditions of the joints have to be considered in the test design. In this study, a finite element method (FEM) is implemented to analyze a torsional shear strength test designed for glass-ceramic/steel joints aiming towards solid oxide fuel/electrolysis cells application. Deviations from axial symmetry of the square flanges (ends) of respective hourglass-shaped specimens and also supporting and loading sockets of the test set-up are included in the model to simulate conditions close to reality. Undesirable tensile stress and also shear stress concentration appear at the outer edge of glass-ceramic layers, which are less for the hollow-full specimen. The simulation results show that for a specimen with either 9 mm thick square- or 6 mm thick triangular-flanges, locally enhanced tensile stresses almost disappear, resulting in a symmetric shear stress distribution. The difference between the analytically derived nominal shear strength and the real critical shear stress derived via simulation reduces with decreasing the fracture torque.
000875303 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000875303 588__ $$aDataset connected to CrossRef
000875303 7001_ $$0P:(DE-Juel1)129755$$aMalzbender, J.$$b1$$eCorresponding author$$ufzj
000875303 7001_ $$0P:(DE-Juel1)133667$$aGroß-Barsnick, S. M.$$b2$$ufzj
000875303 7001_ $$0P:(DE-HGF)0$$aAbdoli, H.$$b3
000875303 7001_ $$0P:(DE-HGF)0$$aKokabi, A. H.$$b4
000875303 7001_ $$0P:(DE-HGF)0$$aFaghihi-Sani, M. A.$$b5
000875303 773__ $$0PERI:(DE-600)245887-1$$a10.1016/j.ceramint.2019.10.221$$gVol. 46, no. 4, p. 4857 - 4863$$n4$$p4857 - 4863$$tCeramics international / Ci news$$v46$$x0272-8842$$y2020
000875303 8564_ $$uhttps://juser.fz-juelich.de/record/875303/files/Hasanabadi%20Ceram%20Int%202020.pdf$$yPublished on 2019-10-24. Available in OpenAccess from 2021-10-24.
000875303 8564_ $$uhttps://juser.fz-juelich.de/record/875303/files/Hasanabadi%20Ceram%20Int%202020.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-10-24. Available in OpenAccess from 2021-10-24.
000875303 909CO $$ooai:juser.fz-juelich.de:875303$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000875303 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129755$$aForschungszentrum Jülich$$b1$$kFZJ
000875303 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133667$$aForschungszentrum Jülich$$b2$$kFZJ
000875303 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000875303 9141_ $$y2020
000875303 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000875303 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000875303 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000875303 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000875303 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCERAM INT : 2015
000875303 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000875303 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000875303 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000875303 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000875303 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000875303 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000875303 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000875303 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000875303 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000875303 9201_ $$0I:(DE-Juel1)ZEA-1-20090406$$kZEA-1$$lZentralinstitut für Technologie$$x1
000875303 9801_ $$aFullTexts
000875303 980__ $$ajournal
000875303 980__ $$aVDB
000875303 980__ $$aUNRESTRICTED
000875303 980__ $$aI:(DE-Juel1)IEK-2-20101013
000875303 980__ $$aI:(DE-Juel1)ZEA-1-20090406
000875303 981__ $$aI:(DE-Juel1)ITE-20250108
000875303 981__ $$aI:(DE-Juel1)IMD-1-20101013