001     875303
005     20250701125857.0
024 7 _ |a 10.1016/j.ceramint.2019.10.221
|2 doi
024 7 _ |a 0272-8842
|2 ISSN
024 7 _ |a 0392-2960
|2 ISSN
024 7 _ |a 2128/24842
|2 Handle
024 7 _ |a WOS:000512219600098
|2 WOS
037 _ _ |a FZJ-2020-01934
082 _ _ |a 670
100 1 _ |a Fakouri Hasanabadi, M.
|0 P:(DE-Juel1)171261
|b 0
245 _ _ |a Finite element optimization of sample geometry for measuring the torsional shear strength of glass/metal joints
260 _ _ |a Faenza
|c 2020
|b Ceramurgia73399
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1589205690_17234
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Assessment of mechanical properties of glass/metal joints is a challenging process, especially when the application relevant conditions of the joints have to be considered in the test design. In this study, a finite element method (FEM) is implemented to analyze a torsional shear strength test designed for glass-ceramic/steel joints aiming towards solid oxide fuel/electrolysis cells application. Deviations from axial symmetry of the square flanges (ends) of respective hourglass-shaped specimens and also supporting and loading sockets of the test set-up are included in the model to simulate conditions close to reality. Undesirable tensile stress and also shear stress concentration appear at the outer edge of glass-ceramic layers, which are less for the hollow-full specimen. The simulation results show that for a specimen with either 9 mm thick square- or 6 mm thick triangular-flanges, locally enhanced tensile stresses almost disappear, resulting in a symmetric shear stress distribution. The difference between the analytically derived nominal shear strength and the real critical shear stress derived via simulation reduces with decreasing the fracture torque.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Malzbender, J.
|0 P:(DE-Juel1)129755
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Groß-Barsnick, S. M.
|0 P:(DE-Juel1)133667
|b 2
|u fzj
700 1 _ |a Abdoli, H.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kokabi, A. H.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Faghihi-Sani, M. A.
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1016/j.ceramint.2019.10.221
|g Vol. 46, no. 4, p. 4857 - 4863
|0 PERI:(DE-600)245887-1
|n 4
|p 4857 - 4863
|t Ceramics international / Ci news
|v 46
|y 2020
|x 0272-8842
856 4 _ |y Published on 2019-10-24. Available in OpenAccess from 2021-10-24.
|u https://juser.fz-juelich.de/record/875303/files/Hasanabadi%20Ceram%20Int%202020.pdf
856 4 _ |y Published on 2019-10-24. Available in OpenAccess from 2021-10-24.
|x pdfa
|u https://juser.fz-juelich.de/record/875303/files/Hasanabadi%20Ceram%20Int%202020.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:875303
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129755
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)133667
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CERAM INT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)ZEA-1-20090406
|k ZEA-1
|l Zentralinstitut für Technologie
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a I:(DE-Juel1)ZEA-1-20090406
981 _ _ |a I:(DE-Juel1)ITE-20250108
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21