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Abstract: A biomimetic solution technology for producing a photocatalytic material in the form of
biomorphic titanium oxide fibers with a hierarchical structure using short flax fiber as a biotemplate is
proposed. The impregnation of flax fibers intensified under hydrothermal conditions with a precursor
was performed in an autoclave to activate the nucleation of the photoactive TiO2 phases. The interaction
between precursor and flax fibers was studied by using infrared spectroscopy (IR) and differential
scanning calorimetry/thermogravimetry analysis (DSC/TG). The morphology, structure, and textural
properties of the TiO2 fibers obtained at annealing temperatures of 500–700 ◦C were determined by
X-ray diffraction analysis, scanning electron microscopy, and nitrogen adsorption/desorption. It is
shown that the annealing temperature of the impregnated biotemplates significantly affects the phase
composition, crystallite size, and porous structure of TiO2 fiber samples. The photocatalytic activity
of the obtained fibrous TiO2 materials was evaluated by using the decomposition of the cationic
dye Rhodamine B in an aqueous solution (concentration 12 mg/L) under the influence of ultraviolet
radiation (UV). The maximum photodegradation efficiency of the Rhodamine B was observed for
TiO2 fibers annealed at 600 ◦C and containing 40% anatase and 60% rutile. This sample ensured
100% degradation of the dye in 20 min, and this amount significantly exceeds the photocatalytic
activity of the commercial Degussa P25 photocatalyst and TiO2 samples obtained previously under
hydrothermal conditions by the sol-gel method.

Keywords: hierarchical structure; biomorphic fibers TiO2; Titanium polyhydroxocomplexes;
adsorption; photocatalytic activity

1. Introduction

Among various photoactive materials, TiO2 is recognized to be one of the most effective
semiconductor photocatalysts for the decomposition or oxidation of organic pollutants in a liquid
medium. Moreover, its high photocatalytic activity combines with chemical inertness, non-toxicity,
low cost, and environmental friendliness [1–3]. It is known that the photocatalytic activity of TiO2

depends on the phase composition, crystallinity, and specific surface area that are determined, as a rule,
by the photocatalyst preparation method [4–6].

To increase the photocatalytic activity of titanium oxide by enhancing the light absorption,
as well as diffusion and adsorption of reagent molecules, an approach related to the production
of TiO2 in the form of a material with a hierarchical morphological structure was proposed [7–9].
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It contains structural elements with sizes in a wide range of values from nano- to several tens of
micrometers, including micro-, meso-, and macropores [10,11]. The presence of interconnected pores
with various sizes in the catalyst structure ensures high diffusion efficiency of the reagents subjected
to photodegradation.

The biomimetic method is one of the most effective, simple and cheap methods for obtaining
materials with hierarchical morphology. It is based on the application of natural templates, which are
impregnated with a precursor, followed by drying and burning. Among the common biotemplates,
one can distinguish various cellulosic materials (wood pulp, cotton, filter paper) having a multimeric
arrangement with a system of pores and capillaries [12–18].

Almost all known biotemplate methods for TiO2 production using cellulosic materials imply the
formation of a TiO2 sol layer on the fiber surface. In this case, the treatment of cellulose fibers is carried
out with solutions of alcoholates and other titanium compounds, including sol-gel methods [12–16,19].
However, the methods for TiO2 fibers production by applying a sol to cellulose have a number of
disadvantages, such as: the high labor input, the complexity of the procedures, and the problem of
destruction of hollow fibers during their preparation [20].

In our previous work, we have proposed [21] an appropriate approach to the preparation of
biomorphic TiO2 with a hierarchical structure based on the impregnation of the biotemplate—wood
pulp—with a solution of large-sized hydrolytic forms of titanium, which are formed at the intermediate
stage of the transition of the solution to sol and are effectively being sorbed by cellulose fiber.
It should be noted that in practice solutions of titanium hydroxocomplexes were previously used
only for the preparation of pillared clays, which are effective catalysts and sorbents [22–24]. In our
previous study [25], the production of TiO2-pillared montmorillonite using solutions of titanium
hydroxocomplexes was described. It was found that application of hydrothermal treatment at the
stage of pillaring allows for increasing the degree of crystallinity of TiO2 and thereby improves
the photocatalytic properties of the obtained material. When using hydrothermal treatment in
biotemplate synthesis, it is necessary to take into account the fact that the preparation of stable forms
of titanium hydroxocomplexes requires high concentration of an acid [22]. Under these conditions,
some biotemplates, for example wood pulp, can be decomposed. Therefore, it is necessary to choose a
template with higher acid resistance. From this point of view, a short flaxen fibre is a suitable candidate,
which is in fact a waste remaining after flaxen trusts machining and which is not further used in spinning
to obtain flaxen fabrics. Flax fiber has a complex multimeric structure with a system of pores and
capillaries and also includes elementary cellulose fibers—polymers consisting of β-D-glucopyranose
units with hydroxyl groups. These fibers, as the main components of flax, are capable of sorbing from
a solution polycations—precursors of the photocatalyst, as well as of accelerating the nucleation and
growth of its particles under hydrothermal conditions.

In the present work, we aim to obtain fibrous TiO2 with high photocatalytic activity by the
biotemplate method by the use of impregnating a short flax fiber with a precursor solution. To activate
the nucleation of photoactive precursor particles, the process was carried out in an autoclave. In this
work, we considered the influence of the hydrothermal effects and the annealing temperature on the
structure, texture properties, and photocatalytic activity of the obtained TiO2.

2. Results and Discussion

The particle size distribution of titanium hydroxocomplexes in a precursor solution is shown in
Figure 1. It can be seen that the modal value of the size of the complexes is 1.5 nm. This size allows
for supposing the uniformity of impregnation in comparison with sol precursors, and retains the
possibility of efficient nucleation of nano- and microcrystallites in the body of the biotemplate.
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Figure 1. Hydrodynamic diameter distribution in the 0.56 M solution of titanium 
hydroxocomplexes. 

To identify the patterns of formation of fibrous TiO2 during the flax fibre impregnation process, 
IR spectra of the biotemplate were studied before and after impregnation with a solution of titanium 
hydroxocomplexes (0.56 M) using hydrothermal influences (Figure 2). 
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Figure 2. FTIR spectra of flax fiber before (a) and after (b) impregnation with a solution of titanium 
hydroxocomplexes. 

As it can be seen from Figure 2, impregnation of flax fiber with a precursor solution leads to 
some changes in the IR spectrum. First of all, there is a narrowing and a slight decrease in the intensity 
of the absorption band in the region of 3000–3600 cm−1 caused by stretching vibrations of OH bonds 
included in hydrogen bonds. In addition, the band intensity decreases noticeably at 2125 cm−1, and it 
indicates the presence of nitrogenous substances in the biotemplate. A decrease in the intensity of the 
bands at 2922, 2856, and 1633 cm−1 is observed, which is caused by deformation vibrations of the CH 
bond in the CH2 and CH groups of hemicellulose [26,27]. The most probable cause of such changes 
in the spectrum of raw flax fiber is the destruction of impurities associated with cellulose as a result 
of their acid hydrolysis in a solution of titanium hydroxocomplexes. Hydrothermal conditions 
contribute to the intensification of the hydrolytic destruction of the components of the incrusts and 
the carbohydrate complex of flax fiber, as well as to its release from the decay products of impurities. 
An indirect confirmation of these effects is the intense brown coloring of the precursor solution after 
treating flax fibers in it, and such a color is typical for solutions of impurities of flax fibers. 

In addition, an absorption band at 617 cm−1 arises in the sample of the impregnated biotemplate, 
which corresponds to stretching vibrations of the Ti–O groups characteristic of titanium dioxide 
[28,29]. This means that formation of TiO2 in the biotemplate structure begins even at the stage of 
impregnation in an autoclave. 

Figure 1. Hydrodynamic diameter distribution in the 0.56 M solution of titanium hydroxocomplexes.

To identify the patterns of formation of fibrous TiO2 during the flax fibre impregnation process,
IR spectra of the biotemplate were studied before and after impregnation with a solution of titanium
hydroxocomplexes (0.56 M) using hydrothermal influences (Figure 2).
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Figure 2. FTIR spectra of flax fiber before (a) and after (b) impregnation with a solution of titanium 
hydroxocomplexes. 
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Figure 2. FTIR spectra of flax fiber before (a) and after (b) impregnation with a solution of
titanium hydroxocomplexes.

As it can be seen from Figure 2, impregnation of flax fiber with a precursor solution leads to some
changes in the IR spectrum. First of all, there is a narrowing and a slight decrease in the intensity of
the absorption band in the region of 3000–3600 cm−1 caused by stretching vibrations of OH bonds
included in hydrogen bonds. In addition, the band intensity decreases noticeably at 2125 cm−1, and it
indicates the presence of nitrogenous substances in the biotemplate. A decrease in the intensity of
the bands at 2922, 2856, and 1633 cm−1 is observed, which is caused by deformation vibrations of
the CH bond in the CH2 and CH groups of hemicellulose [26,27]. The most probable cause of such
changes in the spectrum of raw flax fiber is the destruction of impurities associated with cellulose as a
result of their acid hydrolysis in a solution of titanium hydroxocomplexes. Hydrothermal conditions
contribute to the intensification of the hydrolytic destruction of the components of the incrusts and
the carbohydrate complex of flax fiber, as well as to its release from the decay products of impurities.
An indirect confirmation of these effects is the intense brown coloring of the precursor solution after
treating flax fibers in it, and such a color is typical for solutions of impurities of flax fibers.

In addition, an absorption band at 617 cm−1 arises in the sample of the impregnated biotemplate,
which corresponds to stretching vibrations of the Ti–O groups characteristic of titanium dioxide [28,29].
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This means that formation of TiO2 in the biotemplate structure begins even at the stage of impregnation
in an autoclave.

To study the burning process of the impregnated flaxen template, a TG/DSC analysis was used.
Two samples before and after impregnation with a solution of titanium hydroxocomplexes were
studied under air atmosphere. The results are shown in Figure 3.
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Figure 3. TG/DSC thermograms of the flax fiber before (a) and after (b) impregnation with a solution 
of titanium hydroxocomplexes. 
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Figure 4. X-ray patterns of fibrous TiO2. 

Table 1. Phase composition and average crystallite size of the fibrous TiO2. 

Sample Average Crystallite Sizes, nm Phase Composition, % 

 A R A R 

TiO2500 15.7 19.2 50 50 

TiO2600 21.6 27.7 40 60 

TiO2700 40.0 45.0 25 75 

Figure 3. TG/DSC thermograms of the flax fiber before (a) and after (b) impregnation with a solution of
titanium hydroxocomplexes.

In both cases, burning starts around 250 ◦C and finishes at 450 ◦C. This process is going in two
stages, as it can be seen from DSC as well as from the TG signal. In the first case, the process ends with
a complete burnout of the material under study. In the case of an impregnated sample, the processes of
oxidation and thermal destruction occur simultaneously with the thermolysis of the precursor salt
and the formation of titanium oxide. All these effects can be overlapped with each other and make it
difficult to analyze the results in detail. The main difference between these two samples is the weight
loss, which shows formation of TiO2 fibers after impregnation (67%).

To determine the phase composition and sizes of the corresponding crystallites of titanium oxide
samples, XRD analysis was performed. The results are presented in Figure 4 and Table 1.

The results demonstrate that an increase in the annealing temperature is naturally accompanied
by the conversion of metastable anatase to stable rutile. At the same time, the temperature increase
causes the growth of TiO2 crystallites. The results of the texture properties of fibrous TiO2 samples
studied by the method of low-temperature adsorption/desorption of N2 are presented in Figure 5 and
in Table 2.
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Table 1. Phase composition and average crystallite size of the fibrous TiO2. 
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Figure 4. X-ray patterns of fibrous TiO2.
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Table 1. Phase composition and average crystallite size of the fibrous TiO2.

Sample Average Crystallite Sizes, nm Phase Composition, %

A R A R

TiO2500 15.7 19.2 50 50
TiO2600 21.6 27.7 40 60
TiO2700 40.0 45.0 25 75
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Table 2. Porosimetry data for the fibrous TiO2 samples.

Sample SBET (Mesopores) (m2/g) VTotal (cm3/g) VBJH (cm3/g) Dp (nm)

TiO2500 30.21 0.093979 0.0884885 7.70637
TiO2600 29.23 0.093046 0.0882438 7.69106
TiO2700 17.46 0.065963 0.0551854 7.28634

The nitrogen adsorption isotherms of the prepared samples belong to the type IV and have a
hysteresis loop of type H3 (according to the IUPAC classification), typical for mesoporous materials [30].
Temperature variation of the annealing of the flaxen template in the range of 500–600 ◦C has a
weak effect on the texture characteristics of TiO2. At 700 ◦C, a significant decrease of the SBET value
is observed.

The morphology of the initial biotemplate and the obtained TiO2 fibers was studied by SEM.
Figure 6 presents the images of the hierarchical structural arrangement of the studied samples.

On the surface of the biotemplate residues, accompanying flaxen cellulose substances
(hemicelluloses, pectin, and lignin) are visible. The cell wall of an elementary fiber consists of
strongly oriented mesofibril cellulose, which is about 200 nm thick, embedded in a matrix consisting of
hemicellulose and lignin [31]. In addition, pores up to 250 nm in size are visible in the flax fiber wall.
A fibrous TiO2 sample is a ceramic replica of a biotemplate having a corpuscular-spongy texture and
hierarchical organization, which is characterized by the presence of crystallites agglomerated in the
longitudinal direction with micro- and mesopores in between.

The size of TiO2 crystallite agglomerates is relatively large (about 500–700 µm), which also
confirms the fact of TiO2 formation at the beginning of the stage of impregnation of the biotemplate
in the autoclave studied by IR spectroscopy. The continuation of annealing leads to further crystal
growth and to agglomeration of titanium oxide fibers with crystallites sintered together.
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The photocatalytic activity of fibrous TiO2 samples was evaluated according to the decomposition
of the Rhodamine B dye as a model substance under the influence of ultraviolet radiation. This dye
degradation mechanism [32–37] and its theoretical explanation [38] using different forms of TiO2

photocatalysts were previously thoroughly studied. It allows us to compare the photocatalytic activity
of our TiO2 samples with the literature data. As it is already known, the efficiency of dye removal from
aqueous solutions on a photocatalyst is determined by the additive adsorption and photocatalysis
process. We studied the kinetics of Rhodamine B adsorption by the fibrous TiO2 (Figure 7). The kinetic
curves have similar shape. The difference can be seen only in the amount of adsorbed substance at
equilibrium state, which was established in all cases within about 30 min.
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After a 30-min contact of the phases in the series of samples TiO2700, TiO2600, and TiO2500,
the adsorption capacity with respect to Rhodamine B is successively increased. TiO2500 removed 37%
of the dye from the solution, while TiO2600 and TiO2700 removed 20% and 14%, respectively. The data
on adsorption capacity correlate well with the texture properties of photocatalysts (Table 2).

To describe the kinetics of adsorption, we used the well-known kinetic models of pseudo-first
order Lagergren [39] and pseudo-second order Ho and Mackay [40], which can be represented by
Equations (1) and (2), respectively:

Qt = Qe(1− exp−k1t), (1)

Qt =
k2Q2

e t
1 + k2Qet

(2)

Qt and Qe in mg/g are the quantity of adsorbed dye per unit mass of the sorbent at a given time t
and at equilibrium, respectively; k1 and k2 are the adsorption rate constants of the pseudo-first (min−1)
and pseudo-second order (g mg−1 min−1), respectively. The criterion for the adequacy of kinetic
models was the coefficient R2. The obtained parameters are given in Table 3.

Table 3. Parameters of Rhodamine B dye adsorption kinetics for the obtained fibrous TiO2 samples.

Kinetic Model TiO2500 TiO2600 TiO2700

Pseudo-first order
Qe (mg g−1) 0.615 0.342 0.245
k1 (min−1) 0.800 0.460 0.809

R2 0.999 0.998 0.996
Pseudo-second order

Qe (mg g−1) 0.626 0.365 0.248
k2 (g mg−1 min−1) 5.549 2.450 16.440

R2 0.996 0.999 0.992

The obtained values of R2 indicate the applicability of pseudo-first and pseudo-second order kinetic
models for describing the kinetics of Rhodamine B adsorption on fibrous TiO2. Considering higher R2

values, preference should be given to a pseudo-first order kinetic model which indicates that sorption
is preceded by diffusion. The obtained results show that the processes that control the kinetics of
absorption of the Rhodamine B dye by TiO2 fiber samples are most likely to be both physical and
chemical sorption [41].

The results of the study of the UV photolysis of the Rhodamine B dye in an aqueous solution in
the presence of the obtained photocatalyst samples (measurements were performed after 30 min of
sorption) are presented in Figure 8. For comparison, the kinetic curve obtained using a commercial
Degussa P-25 catalyst is also shown in this figure.Catalysts 2020, 10, x FOR PEER REVIEW 8 of 14 
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It can be seen that all studied samples of fibrous TiO2 are characterized by improved photocatalytic
activity in comparison with a commercial photocatalyst.

Among all fibrous TiO2 samples synthesized in this work, the highest photocatalytic activity was
observed for TiO2600. Several factors are known to influence the activity of TiO2 in the photocatalytic
process, namely: texture properties that determine the sorption ability of the catalyst particles,
crystallite size, and their phase composition [42]. All the TiO2 samples obtained in this work were
mixtures of anatase and rutile, which are known to be more effective in the photocatalytic process
as the synergistic effect between the two phases reduces the recombination effect. For example,
the authors of [43] experimentally observed that mixed-phase TiO2 nanoparticles are significantly
better photocatalysts than a simple mixture of single-phase nanoparticles due to their close-contact
heterophase junctions, which are apparently also the case in the solution technology applied in this
work. The conduction band electrons from the rutile phase are being transferred to the anatase phase
due to favorable conduction band alignment, in this way inhibiting charge recombination [44,45].
Moreover, in a mixed anatase/rutile configuration, the lattices align to facilitate charge separation,
thus enhancing the photocatalytic efficiency of mixed-phase TiO2 compared to its single phases [46–48].
At the same time, unambiguous information on the optimal phase composition of TiO2, which ensures
its highest photocatalytic activity, is not available in the literature; this problem remains under
discussion in literature [44,49,50]. For example, the authors of [50] observed a TiO2 anatase/rutile
phase ratio (40%/60%) similar to TiO2600 in this work with as well maximum photocatalytic activity.

As can be seen from Table 2, samples TiO2500 and TiO2600 are characterized by similar values of
SBET and pores size. However, TiO2600 has a higher crystallite size which is a factor that positively effects
photocatalytic activity, since, with increasing crystallite sizes, the rate of annihilation of electron–hole
pairs decreases [51]. The TiO2700 sample is characterized by the largest crystallite sizes; however, it has
SBET that is almost two times smaller.

Table 4. Comparison of the photocatalytic activity of TiO2.

Photocatalyst RhBconc
(Volume)

Degradation,
%

Photocatalyst
Concentration,

g/L

Degradation
Time, min Light Source (Power) Ref.

Commercial Degussa P25
TiO2 (85% of anatase and 15%

of rutile)

10 mg/L
(40 mL) 95 2.5 150 GYZ220 high-pressure

xenon lamp (150 W) [32]

TiO2 (anatase) synthesized by
a hydrothermal process

20 mg/L
(1000 mL) 80 0.5 180

HL100CH-5 lamp
(intensity of
6.5 mW/cm2)

[33]

Nano-TiO2 (pure anatase)
microwave hydrothermal

method

10 mg/L
(60 mL) 84 25 60 high pressure

mercury lamp (500 W) [34]

Flower-like TiO2 (rutile)
synthesized by a one-step

hydrothermal route

10 mg/L
(50 mL) ~45 1.0 50 100 W mercury lamp [35]

Commercial nano
anataseTiO2

30 mg/L
(50 mL) 100 2.0 30 A 400 W ultraviolet

metal halogen lamp [36]

TiO2 nanostructures (anatase) 6 mg/L
(100 mL) 95 2.5 195

UV lamp Ephoton (eV)
4.43–12.4 with λmax

(nm) 280–100
[37]

TiO2 fibers (40% of anatase
phase and 60% of rutile)

12 mg/L
(500 mL) 100 0.6 20

Mercury lamp
high-pressure (250 W,

365 nm)

This
work

In order to obtain new catalytic materials, it is important to compare their effectiveness with
existing analogues. Unfortunately, a direct comparison of the effectiveness of the catalysts is extremely
difficult due to the different power of the lamps used in the experiments, different weight of the
catalyst, the initial concentration of the dye, etc. However, it is possible to draw indirect conclusions.
The data presented in Table 4 show the high activity of the photocatalyst formed in this work, if we
take time and completeness of dye degradation as a basis for comparison. To explain the high activity,
in addition to its biomorphic hierarchical structure and the characteristics of the phase composition of
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the fibers, the shape of the particles of the photocatalyst can play an important role, e.g., see in Table 4.
There are no fiber-like particles, while there is an opinion that particles with an elongated shape can
exist. This can act as microantennas, adsorbing light quanta more efficiently than particles of a spherical
or other shape [52]. Therefore, the fiber-like particles can have higher photocatalytic properties.

3. Materials and Methods

3.1. Fibrous TiO2 Preparation

To obtain fibrous TiO2, a short flaxen fiber was used as a biotemplate (fiber length 4–120 mm,
thickness 20–30 µm, ash 1.3–1.5%). The fiber was the waste remaining after machining the linen trust.
Precursor solutions were prepared by hydrolysis of titanium chloride (TiCl4) (Sigma-Aldrich Rus,
Moscow, Russia) at room temperature in accordance with the procedure described in [22]. For this
purpose, initially, TiCl4 was added dropwise to a 6 M HCl solution in order to obtain a solution with a
concentration of Ti4+ 4.92 M (the concentration of solutions 4.92 M was the limit of ash formation).
The obtained highly concentrated solution was slowly diluted with distilled water while continuous
stirring until a solution with a residual concentration of Ti4+ 0.56 M was obtained (we successfully
used it in [25] to get photocatalytic materials by activating hydrothermally the intercalation of titanium
polycations). Before using, the precursor solution was aged for 3 h at 20 ◦C, resulting in the formation
of titanium polyhydroxocomplexes.

The biotemplate samples were impregnated with a precursor solution in an autoclave for 5 h at
a temperature of 115 ◦C and a pressure of 170 kPa using a pressure reactor with a fluoroplastic beaker.
After treatment, the autoclave was inertially cooled to a room temperature. It should be noted that
the choice of moderate parameters (temperature and time) of hydrothermal treatment was due to the
prevention of a significant decrease in the specific surface area of the samples because of the formation
of large crystallites by using a higher temperature and a long processing time. When the impregnation
time was over, the samples were removed from the precursor solution, centrifuged at a peripheral
speed of 1500 m/min, and then dried in a desiccator at 95 ◦C to achieve constant weight. TiO2 fibrous
materials were prepared by calcining impregnated samples of the templates at temperatures of 500,
600, and 700 ◦C in an electric furnace in air with a constant exposure time of 30 min. Furthermore,
these materials were referred to as TiO2500, TiO2600, and TiO2700, where 500, 600, and 700 ◦C are the
calcination temperatures of the templates.

3.2. The Dye under Study

Rhodamine B (RhB, C28H31ClN2O3, M = 479.02 g/mol), which belongs to the fluorescent dye
group [53], was chosen as a model dye (Figure 9). Rhodamine B is highly soluble in water and has
high stability to light.
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3.3. The Study of Precursor Solution, Structure, and Properties of Fibrous TiO2 Samples

The sizes of titanium hydroxocomplexes in the precursor solution were studied by dynamic light
scattering on a Zetasizer Nano-ZS analyzer (Malvern Panalytical Ltd., Malvern, UK) at a temperature
of 25 ◦C.
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The thermal transformations of the biotemplate impregnated with a solution of titanium
hydroxocomplexes were studied on a STA 449 F3 Jupiter (Netzsch, Selb, Germany) synchronous
thermal analysis device under air atmosphere with a heating rate of 5 ◦C/min. The flaxen template IR
spectra were measured at room temperature on an Avatar 360 ESP Fourier transform spectrophotometer
in the wavelength range of 400–4000 cm−1 with a resolution of 2 cm−1 and averaging of 64 scans.
The surface morphology of TiO2 samples was studied using a Zeiss MERLIN scanning electron
microscope (ZEISS, Oberkochen, Germany). X-ray phase analysis was performed on a Bruker D8
Advance X-ray diffractometer (Bruker-AXS, Karlsruhe, Germany). The average crystallite size (L) of
TiO2 phases—anatase and rutile—was evaluated by the Scherrer method [54]:

L =
kλ
β cosθ

, (3)

where k is the dimensionless particle shape coefficient (0.94), λ is the x-ray wavelength (λ = 0.15425 nm),
β is the width of the reflex at half maximum (in units of 2θ), and θ is the diffraction angle. The textural
characteristics and the average pore diameter of the samples were determined by the method
of low-temperature nitrogen adsorption-desorption on a specific surface and porosity analyzer
NOVAtouch LX (Quantachrome Instruments, Boynton Beach, FL, USA); the samples were degassed
prior to measurements at 180 ◦C for three hours.

3.4. Evaluation of the Photocatalytic Activity

The photocatalytic activity of the obtained samples of fibrous TiO2 was evaluated by studying the
rate of destruction of RhB in an aqueous solution under the influence of UV radiation. The source
of UV radiation was a high-pressure mercury lamp with a power of 250 W (Philips, Amsterdam,
The Netherlands) with a maximum radiation at 365 nm. The lamp, located in a water-cooled quartz
jacket, was placed in the center of the reaction vessel with a volume of 800 mL. At the bottom of the
reactor, there was a magnetic stirrer, which provided effective mixing of the reaction mass. The reaction
solution was purged with air at a constant rate to ensure a constant concentration of dissolved oxygen
in it. In each experiment, a weighed portion of the obtained photocatalyst powder in an amount of
0.3 g (0.6 g/L) was added to a RhB dye solution (500 mL) with a concentration of 12 mg/L. The reaction
mixture was stirred for a predetermined time (up to 120 min) at a temperature of 25 ◦C. At certain
time intervals, 3 mL of the suspension were selected. Next, the dye solution was separated from the
photocatalysts by centrifugation at 8000 rpm for 15 min. The dye concentration in the solutions before
and after treatment in a photocatalytic reactor was determined photometrically using a Hitachi U2001
UV VIS, (Mettler Toledo, Columbus, OH, USA) spectrophotometer (wavelength range 200–800 nm),
by measuring the optical density at a wavelength corresponding to the maximum absorption spectrum
for RhB (λmax = 554 nm). Preliminary irradiation of dye solutions for 1 h in the absence of photocatalysts
showed that no significant changes in their optical density occurred during this time. To exclude the
influence of sorption processes on dye removal, the reaction systems were pre-saturated for 30 min [25]
until adsorption equilibrium was reached without using UV radiation and purging the reaction solution
with air. The amount of the adsorbed dye (qt, mg/g) on the sample over time t was calculated by the
equation:

qt =
C0 −Ct

m
V, (4)

where C0 and Ct (mg/L) are the initial dye concentration and dye concentration at time t (min), V is the
volume of the dye solution (4), m is the weight of the sample of air-dry adsorbent (g). All photocatalytic
experiments were repeated twice.

4. Conclusions

The results of this work demonstrate the fundamental possibility of obtaining biomorphic
titanium oxide with a hierarchical structure by applying biomimetic solution technology using short
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flax fiber as a template. The application of solutions of titanium hydroxocomplexes provides high
quality impregnation of the template under hydrothermal conditions, which promotes the nucleation
of polymorphic TiO2 phases and thermal degradation of the impregnated biotemplate during its
subsequent annealing in the temperature range of 500–700 ◦C. All obtained templates of TiO2 fibers are
a mixture of anatase and rutile. Their nanocrystallite sizes are in the range of 16–45 nm. The TiO2600
sample characterized by the anatase and rutile phase ratio of 40:60 and the crystallite sizes of about
22 and 28 nm, respectively, demonstrates the highest photocatalytic activity. The Rodamine B dye
completely decomposes under UV-irradiation in 20 min using this catalyst. The hierarchical structural
organization of biomorfic TiO2 obtained by solution technology provides this photocatalyst with an
advantage compared to other well-known analogs obtained mainly using sol-gel technology.
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