001     875306
005     20250701125857.0
024 7 _ |a 10.3389/fmats.2020.00019
|2 doi
024 7 _ |a 2128/24845
|2 Handle
024 7 _ |a altmetric:75416047
|2 altmetric
024 7 _ |a WOS:000517157200001
|2 WOS
037 _ _ |a FZJ-2020-01937
082 _ _ |a 620
100 1 _ |a Rodríguez-López, Sonia
|0 P:(DE-Juel1)162227
|b 0
245 _ _ |a Thermo-Mechanical Stability and Gas-Tightness of Glass-Ceramics Joints for SOFC in the System MgO-BaO/SrO-B2O3-SiO2
260 _ _ |a Lausanne
|c 2020
|b Frontiers Media
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1589214921_17234
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The objective of this paper is to illustrate a variety of studies carried out to improve the quality of some particular glass-ceramic joining materials based on measured properties such as gas-tightness and mechanical resistance and demonstrate the feasibility of using the proposed materials for solid oxide fuel cells (SOFC) and solid oxide electrolysis cells (SOEC) applications. First, the sealing conditions have been optimized for the two selected compositions in the system MgO-BaO/SrO-B2O3-SiO2. Once the joining materials have been optimized, the gas-tightness has been measured as a function of the glass-ceramic crystallization degree, its thermal cycling behavior and the influence of a reducing atmosphere on this property. The electrical resistance at high temperature has also been studied. Subsequently, the chemical compatibility of the joints steel/glass-ceramic has been evaluated by means of the analysis of the cross-sections using SEM and EDX. Furthermore, the mechanical and chemical stability of the joints has also been studied as a function of the crystallization degree, the resistance vs. thermal cycling and the influence of a reducing atmosphere. Finally, the mechanical resistance of the joints regarding flexural loading has been characterized employing a 4-point bending method both at room temperature and at relevant high temperatures varying the seal thickness. Overall, the results verify that the developed and tested materials are promising for long term stable SOFC and SOEC applications in advanced stack designs aiding prolonged lifetime under thermal-cyclic conditions.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Malzbender, Jürgen
|0 P:(DE-Juel1)129755
|b 1
700 1 _ |a Justo, Virginia M.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Serbena, Francisco C.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Groß-Barsnick, Sonja M.
|0 P:(DE-Juel1)133667
|b 4
700 1 _ |a Pascual, Maria J.
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
773 _ _ |a 10.3389/fmats.2020.00019
|g Vol. 7, p. 19
|0 PERI:(DE-600)2759394-0
|p 19
|t Frontiers in Materials
|v 7
|y 2020
|x 2296-8016
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/875306/files/Rodriguez%20Front%20Mater%202020.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/875306/files/fmats-07-00019.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/875306/files/Rodriguez%20Front%20Mater%202020.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/875306/files/fmats-07-00019.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:875306
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129755
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)133667
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FRONT MATER : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)ZEA-1-20090406
|k ZEA-1
|l Zentralinstitut für Technologie
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a I:(DE-Juel1)ZEA-1-20090406
981 _ _ |a I:(DE-Juel1)ITE-20250108
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21