000875307 001__ 875307
000875307 005__ 20240709094443.0
000875307 0247_ $$2doi$$a10.1016/j.surfcoat.2019.125018
000875307 0247_ $$2ISSN$$a0257-8972
000875307 0247_ $$2ISSN$$a1879-3347
000875307 0247_ $$2Handle$$a2128/24844
000875307 0247_ $$2WOS$$aWOS:000503100800071
000875307 037__ $$aFZJ-2020-01938
000875307 082__ $$a670
000875307 1001_ $$0P:(DE-Juel1)165775$$aEbrahimzade, V.$$b0$$eCorresponding author
000875307 245__ $$aMicrostructure and cyclic oxidation behavior of APS TBC systems drilled with various laser methods
000875307 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2019
000875307 3367_ $$2DRIVER$$aarticle
000875307 3367_ $$2DataCite$$aOutput Types/Journal article
000875307 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1589210094_21222
000875307 3367_ $$2BibTeX$$aARTICLE
000875307 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000875307 3367_ $$00$$2EndNote$$aJournal Article
000875307 520__ $$aAiming towards an optimization of drilling of cooling holes for gas turbine applications, thermal barrier coated specimens were drilled with different laser set-ups. The investigated TBC system consists of an APS deposited TBC systems, a MCrAlY bond coating (BC), and a Nickel-based super alloy. The microstructural analysis was performed after laser drilling and also cyclic oxidation tests, in order to understand the influence of different laser drilling parameters, i.e. trepanation/percussion drilling, long-pulsed and ultra-short pulsed lasers, and hole angle. Aiming towards this, the first test series consisted of an assessment of specimens that were laser drilled with different parameters which were only analyzed regarding microstructural aspects, whereas the second series was based on specimens that were laser drilled with various laser parameters which were subsequently tested by cyclic oxidization experiments. Initiation and progress of delamination as function of the number of cycles was assessed from thermography images and correlated with complementary finite element analysis.
000875307 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000875307 588__ $$aDataset connected to CrossRef
000875307 7001_ $$0P:(DE-HGF)0$$aUchtmann, H.$$b1
000875307 7001_ $$0P:(DE-Juel1)129795$$aSingheiser, L.$$b2
000875307 7001_ $$0P:(DE-HGF)0$$aKüger, M.$$b3
000875307 7001_ $$0P:(DE-Juel1)129755$$aMalzbender, J.$$b4
000875307 773__ $$0PERI:(DE-600)1502240-7$$a10.1016/j.surfcoat.2019.125018$$gVol. 378, p. 125018 -$$p125018 -$$tSurface and coatings technology$$v378$$x0257-8972$$y2019
000875307 8564_ $$uhttps://juser.fz-juelich.de/record/875307/files/Ebrahimzade%20Surf%20Coat%20Tech%202019.pdf$$yPublished on 2019-10-17. Available in OpenAccess from 2021-10-17.
000875307 8564_ $$uhttps://juser.fz-juelich.de/record/875307/files/Ebrahimzade%20Surf%20Coat%20Tech%202019.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-10-17. Available in OpenAccess from 2021-10-17.
000875307 909CO $$ooai:juser.fz-juelich.de:875307$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000875307 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165775$$aForschungszentrum Jülich$$b0$$kFZJ
000875307 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129795$$aForschungszentrum Jülich$$b2$$kFZJ
000875307 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129755$$aForschungszentrum Jülich$$b4$$kFZJ
000875307 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000875307 9141_ $$y2020
000875307 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000875307 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000875307 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000875307 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000875307 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSURF COAT TECH : 2017
000875307 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000875307 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000875307 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000875307 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000875307 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000875307 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000875307 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000875307 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000875307 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000875307 9801_ $$aFullTexts
000875307 980__ $$ajournal
000875307 980__ $$aVDB
000875307 980__ $$aUNRESTRICTED
000875307 980__ $$aI:(DE-Juel1)IEK-2-20101013
000875307 981__ $$aI:(DE-Juel1)IMD-1-20101013