001     875308
005     20240711092241.0
024 7 _ |a 10.1016/j.commatsci.2019.109488
|2 doi
024 7 _ |a 0927-0256
|2 ISSN
024 7 _ |a 1879-0801
|2 ISSN
024 7 _ |a WOS:000519572500007
|2 WOS
037 _ _ |a FZJ-2020-01939
082 _ _ |a 530
100 1 _ |a Hüter, Claas
|0 P:(DE-Juel1)169125
|b 0
|e Corresponding author
|u fzj
245 _ _ |a A pragmatic dataset augmentation approach for transformation temperature prediction in steels
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1714570898_3667
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We introduce an augmentation approach for the prediction of phase transformation temperatures that combines thermodynamic considerations and thermodynamic databases. Using the example of the bainitic start temperature, , we demonstrate the improvement of prediction accuracy that this augmentation scheme can provide. The training and testing dataset available from already published experimental measurements provides a varying set of alloying elements and measured bainitic start temperatures. In terms of a minimalistic thermodynamic model, we explain the benefit of augmenting the presented data set by the chemical potential of carbon in the ferritic phase at an estimated start temperature. To evaluate this augmentation scheme, we determine the prediction accuracy of sets of artificial neural networks (ANNs) for the unaugmented dataset, for the – only a posteriori accessible – dataset which is augmented with the chemical potential at the measured bainitic start temperature, and the prediction accuracy for the dataset augmented by an estimated , approximated with two different approaches. While the dataset which is augmented with the chemical potential at the measured bainitic start temperatures would not be practically usable for the prediction of a not yet measured bainitic start temperature, it provides theoretical limits of the achievable accuracy gain due to the augmentation. The developed approximation schemes for at are usable to predict for a given composition. We distinguish two levels of computational expense, which provide a mean absolute error of either about 14 °C or about 4 °C, thus reaching the regime of experimental measurement accuracy.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Yin, X.
|0 P:(DE-Juel1)166023
|b 1
|u fzj
700 1 _ |a Vo, T.
|0 P:(DE-Juel1)177065
|b 2
|u fzj
700 1 _ |a Braun, Silvia
|0 P:(DE-Juel1)129290
|b 3
|u fzj
773 _ _ |a 10.1016/j.commatsci.2019.109488
|g Vol. 176, p. 109488 -
|0 PERI:(DE-600)2014722-3
|p 109488 -
|t Computational materials science
|v 176
|y 2020
|x 0927-0256
856 4 _ |u https://juser.fz-juelich.de/record/875308/files/CMS_ANN.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/875308/files/CMS_ANN.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:875308
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169125
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)166023
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)177065
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129290
913 1 _ |a DE-HGF
|b Energie
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Methods and Concepts for Material Development
|x 0
914 1 _ |y 2020
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMP MATER SCI : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)IBG-2-3-TA-20110204
|k IBG-2-3-TA
|l Biotechnologie Technische und administrative Infrastruktur IBG-2 und 3
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a I:(DE-Juel1)IBG-2-3-TA-20110204
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21