000875311 001__ 875311
000875311 005__ 20250701125857.0
000875311 0247_ $$2doi$$a10.1088/1402-4896/ab4e33
000875311 0247_ $$2ISSN$$a0031-8949
000875311 0247_ $$2ISSN$$a1402-4896
000875311 0247_ $$2Handle$$a2128/25298
000875311 0247_ $$2altmetric$$aaltmetric:77151199
000875311 0247_ $$2WOS$$aWOS:000520000600045
000875311 037__ $$aFZJ-2020-01942
000875311 082__ $$a530
000875311 1001_ $$0P:(DE-Juel1)130166$$aTerra, Alexis$$b0$$eCorresponding author
000875311 245__ $$aMicro-structuring of tungsten for mitigation of ELM-like fatigue
000875311 260__ $$aStockholm$$bThe Royal Swedish Academy of Sciences$$c2020
000875311 3367_ $$2DRIVER$$aarticle
000875311 3367_ $$2DataCite$$aOutput Types/Journal article
000875311 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1594988643_21583
000875311 3367_ $$2BibTeX$$aARTICLE
000875311 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000875311 3367_ $$00$$2EndNote$$aJournal Article
000875311 520__ $$aFusions reactors have to handle numerous specifications before being able to show viable commercial operation, one of which is to find a proper Plasma Facing Material (PFM) which can withstand the high heat loads of several tens of megawatts per square meters combined with the pulse operation of a tokamak and many other problematics (Brezinsek et al 2017 Nucl. Fusion 57 116041). Nowadays, only tungsten is considered as a PFM for high heat flux areas of a tokamak divertor. Tungsten has been selected due to its favorable physical properties, but tungsten has a major drawback: it is brittle under temperatures typically used for water-cooled plasma-facing components (PFC). Under these temperatures the damage threshold due to thermal fatigue induced by ELM is very low, which will dramatically reduce the life-time of the tungsten PFC. The ANSYS simulations and experiments with a millisecond pulsed laser demonstrate a strongly improved ability to withstand thermal fatigue by micro-structuring of the tungsten surface with the help of 150–240 μm diameter tungsten fibres
000875311 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000875311 588__ $$aDataset connected to CrossRef
000875311 7001_ $$0P:(DE-Juel1)130158$$aSergienko, Gennady$$b1
000875311 7001_ $$0P:(DE-Juel1)172933$$aGago, Mauricio$$b2
000875311 7001_ $$0P:(DE-Juel1)130070$$aKreter, Arkadi$$b3
000875311 7001_ $$0P:(DE-HGF)0$$aMartynova, Y.$$b4
000875311 7001_ $$0P:(DE-Juel1)162160$$aRasinski, Marcin$$b5
000875311 7001_ $$0P:(DE-Juel1)129811$$aWirtz, Marius$$b6
000875311 7001_ $$0P:(DE-Juel1)129751$$aLoewenhoff, Thorsten$$b7$$eCorresponding author
000875311 7001_ $$0P:(DE-Juel1)165931$$aMao, Yiran$$b8
000875311 7001_ $$0P:(DE-Juel1)174255$$aSchwalenberg, Daniel$$b9
000875311 7001_ $$0P:(DE-Juel1)169774$$aRaumann, Leonard$$b10
000875311 7001_ $$0P:(DE-Juel1)2594$$aCoenen, Jan Willem$$b11
000875311 7001_ $$0P:(DE-Juel1)139534$$aMöller, Sören$$b12
000875311 7001_ $$0P:(DE-Juel1)133697$$aKoppitz, Thomas$$b13
000875311 7001_ $$0P:(DE-Juel1)171293$$aDorow-Gerspach, Daniel$$b14
000875311 7001_ $$0P:(DE-Juel1)129976$$aBrezinsek, Sebastijan$$b15
000875311 7001_ $$0P:(DE-Juel1)6784$$aUnterberg, Bernhard$$b16
000875311 7001_ $$0P:(DE-Juel1)157640$$aLinsmeier, Christian$$b17
000875311 773__ $$0PERI:(DE-600)1477351-x$$a10.1088/1402-4896/ab4e33$$p014045$$tPhysica scripta$$vT171$$x1402-4896$$y2020
000875311 8564_ $$uhttps://juser.fz-juelich.de/record/875311/files/Terra_2020_Phys._Scr._2020_014045.pdf$$yRestricted
000875311 8564_ $$uhttps://juser.fz-juelich.de/record/875311/files/2Postprint_Terra_Micro-structuring%20of%20tungsten%20for%20mitigation%20of%20ELM-like%20fatigue_PostPrint.pdf$$yPublished on 2020-03-06. Available in OpenAccess from 2021-03-06.
000875311 8564_ $$uhttps://juser.fz-juelich.de/record/875311/files/2Postprint_Terra_Micro-structuring%20of%20tungsten%20for%20mitigation%20of%20ELM-like%20fatigue_PostPrint.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-03-06. Available in OpenAccess from 2021-03-06.
000875311 8564_ $$uhttps://juser.fz-juelich.de/record/875311/files/Terra_2020_Phys._Scr._2020_014045.pdf?subformat=pdfa$$xpdfa$$yRestricted
000875311 909CO $$ooai:juser.fz-juelich.de:875311$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000875311 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130166$$aForschungszentrum Jülich$$b0$$kFZJ
000875311 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130158$$aForschungszentrum Jülich$$b1$$kFZJ
000875311 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172933$$aForschungszentrum Jülich$$b2$$kFZJ
000875311 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130070$$aForschungszentrum Jülich$$b3$$kFZJ
000875311 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162160$$aForschungszentrum Jülich$$b5$$kFZJ
000875311 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129811$$aForschungszentrum Jülich$$b6$$kFZJ
000875311 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129751$$aForschungszentrum Jülich$$b7$$kFZJ
000875311 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165931$$aForschungszentrum Jülich$$b8$$kFZJ
000875311 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174255$$aForschungszentrum Jülich$$b9$$kFZJ
000875311 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169774$$aForschungszentrum Jülich$$b10$$kFZJ
000875311 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2594$$aForschungszentrum Jülich$$b11$$kFZJ
000875311 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)139534$$aForschungszentrum Jülich$$b12$$kFZJ
000875311 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133697$$aForschungszentrum Jülich$$b13$$kFZJ
000875311 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171293$$aForschungszentrum Jülich$$b14$$kFZJ
000875311 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129976$$aForschungszentrum Jülich$$b15$$kFZJ
000875311 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6784$$aForschungszentrum Jülich$$b16$$kFZJ
000875311 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157640$$aForschungszentrum Jülich$$b17$$kFZJ
000875311 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000875311 9141_ $$y2020
000875311 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000875311 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000875311 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000875311 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000875311 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000875311 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000875311 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000875311 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000875311 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000875311 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000875311 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000875311 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x1
000875311 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x2
000875311 9201_ $$0I:(DE-Juel1)ZEA-1-20090406$$kZEA-1$$lZentralinstitut für Technologie$$x3
000875311 9801_ $$aFullTexts
000875311 980__ $$ajournal
000875311 980__ $$aVDB
000875311 980__ $$aUNRESTRICTED
000875311 980__ $$aI:(DE-Juel1)IEK-2-20101013
000875311 980__ $$aI:(DE-Juel1)IEK-4-20101013
000875311 980__ $$aI:(DE-Juel1)IEK-1-20101013
000875311 980__ $$aI:(DE-Juel1)ZEA-1-20090406
000875311 981__ $$aI:(DE-Juel1)ITE-20250108
000875311 981__ $$aI:(DE-Juel1)IMD-1-20101013
000875311 981__ $$aI:(DE-Juel1)IFN-1-20101013
000875311 981__ $$aI:(DE-Juel1)IMD-2-20101013