001     875311
005     20250701125857.0
024 7 _ |a 10.1088/1402-4896/ab4e33
|2 doi
024 7 _ |a 0031-8949
|2 ISSN
024 7 _ |a 1402-4896
|2 ISSN
024 7 _ |a 2128/25298
|2 Handle
024 7 _ |a altmetric:77151199
|2 altmetric
024 7 _ |a WOS:000520000600045
|2 WOS
037 _ _ |a FZJ-2020-01942
082 _ _ |a 530
100 1 _ |a Terra, Alexis
|0 P:(DE-Juel1)130166
|b 0
|e Corresponding author
245 _ _ |a Micro-structuring of tungsten for mitigation of ELM-like fatigue
260 _ _ |a Stockholm
|c 2020
|b The Royal Swedish Academy of Sciences
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1594988643_21583
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Fusions reactors have to handle numerous specifications before being able to show viable commercial operation, one of which is to find a proper Plasma Facing Material (PFM) which can withstand the high heat loads of several tens of megawatts per square meters combined with the pulse operation of a tokamak and many other problematics (Brezinsek et al 2017 Nucl. Fusion 57 116041). Nowadays, only tungsten is considered as a PFM for high heat flux areas of a tokamak divertor. Tungsten has been selected due to its favorable physical properties, but tungsten has a major drawback: it is brittle under temperatures typically used for water-cooled plasma-facing components (PFC). Under these temperatures the damage threshold due to thermal fatigue induced by ELM is very low, which will dramatically reduce the life-time of the tungsten PFC. The ANSYS simulations and experiments with a millisecond pulsed laser demonstrate a strongly improved ability to withstand thermal fatigue by micro-structuring of the tungsten surface with the help of 150–240 μm diameter tungsten fibres
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Sergienko, Gennady
|0 P:(DE-Juel1)130158
|b 1
700 1 _ |a Gago, Mauricio
|0 P:(DE-Juel1)172933
|b 2
700 1 _ |a Kreter, Arkadi
|0 P:(DE-Juel1)130070
|b 3
700 1 _ |a Martynova, Y.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Rasinski, Marcin
|0 P:(DE-Juel1)162160
|b 5
700 1 _ |a Wirtz, Marius
|0 P:(DE-Juel1)129811
|b 6
700 1 _ |a Loewenhoff, Thorsten
|0 P:(DE-Juel1)129751
|b 7
|e Corresponding author
700 1 _ |a Mao, Yiran
|0 P:(DE-Juel1)165931
|b 8
700 1 _ |a Schwalenberg, Daniel
|0 P:(DE-Juel1)174255
|b 9
700 1 _ |a Raumann, Leonard
|0 P:(DE-Juel1)169774
|b 10
700 1 _ |a Coenen, Jan Willem
|0 P:(DE-Juel1)2594
|b 11
700 1 _ |a Möller, Sören
|0 P:(DE-Juel1)139534
|b 12
700 1 _ |a Koppitz, Thomas
|0 P:(DE-Juel1)133697
|b 13
700 1 _ |a Dorow-Gerspach, Daniel
|0 P:(DE-Juel1)171293
|b 14
700 1 _ |a Brezinsek, Sebastijan
|0 P:(DE-Juel1)129976
|b 15
700 1 _ |a Unterberg, Bernhard
|0 P:(DE-Juel1)6784
|b 16
700 1 _ |a Linsmeier, Christian
|0 P:(DE-Juel1)157640
|b 17
773 _ _ |a 10.1088/1402-4896/ab4e33
|0 PERI:(DE-600)1477351-x
|p 014045
|t Physica scripta
|v T171
|y 2020
|x 1402-4896
856 4 _ |u https://juser.fz-juelich.de/record/875311/files/Terra_2020_Phys._Scr._2020_014045.pdf
|y Restricted
856 4 _ |y Published on 2020-03-06. Available in OpenAccess from 2021-03-06.
|u https://juser.fz-juelich.de/record/875311/files/2Postprint_Terra_Micro-structuring%20of%20tungsten%20for%20mitigation%20of%20ELM-like%20fatigue_PostPrint.pdf
856 4 _ |y Published on 2020-03-06. Available in OpenAccess from 2021-03-06.
|x pdfa
|u https://juser.fz-juelich.de/record/875311/files/2Postprint_Terra_Micro-structuring%20of%20tungsten%20for%20mitigation%20of%20ELM-like%20fatigue_PostPrint.pdf?subformat=pdfa
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/875311/files/Terra_2020_Phys._Scr._2020_014045.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:875311
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130166
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130158
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)172933
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130070
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)162160
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129811
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129751
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)165931
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)174255
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)169774
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)2594
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)139534
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)133697
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)171293
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)129976
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 16
|6 P:(DE-Juel1)6784
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 17
|6 P:(DE-Juel1)157640
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 1
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 2
920 1 _ |0 I:(DE-Juel1)ZEA-1-20090406
|k ZEA-1
|l Zentralinstitut für Technologie
|x 3
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)ZEA-1-20090406
981 _ _ |a I:(DE-Juel1)ITE-20250108
981 _ _ |a I:(DE-Juel1)IMD-1-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21