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Abstract 

High ductile-to-brittle transition temperature (DBTT), recrystallization-induced embrittlement, 

and neutron-irradiation-induced embrittlement are potential drawbacks related to the mechanical 

properties of tungsten (W) for plasma facing materials (PFMs) of fusion reactor divertors. To 

improve the mechanical properties, resistance to recrystallization and neutron irradiation, W 

materials modified by potassium (K) doping and alloying by rhenium (Re) have been developed. 

In this paper, thermal shock behaviors of these W materials under high heat flux tests were 

investigated, which simulated an edge localized mode (ELM) of plasma occurring in fusion 

reactors as a transient event. The thermal shock tests were performed with an electron beam 

facility, JUDITH 1, and the post-mortem analyses to evaluate the damage caused by the thermal 

shock tests were carried out. 
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1. Introduction 

Divertor, which has a removal function of waste materials from fusion plasma, is one of 

the most important components to realize nuclear fusion power reactor. Plasma facing materials 

(PFMs) of fusion reactor divertor will be suffered by the steady state and transient heat loads. The 

flux of steady state heat load in divertor will reach to 10–20 MW/m2. In addition to these steady 

state heat loads, the transient event like edge localized modes (ELMs) with power densities of 

GW/m2 will affect the PFMs. As a result of these heat load events, degradation of structural 

strength and lifetime of divertors could occur due to surface modification, cracking, deformation, 

and melting of PFMs [1–3]. To evaluate the effects of transient loads in fusion reactor, simulation 

experiments have been performed using various types of facilities, e.g., plasma gun facilities like 

QSPA Kh-50 [4], linear plasma generators like MAGNUM-PSI [5], and electron beam test 

facilities like JUDITH 1 [6] and JUDITH 2 [7]. 

Pure tungsten (W) is a primary candidate for the PFMs of divertor of ITER and DEMO 

because of its high melting point, thermal conductivity, sputtering resistance, and low tritium 

retention. However, there remain some drawbacks related to the mechanical properties, e.g., high 

ductile-to-brittle transition temperature (DBTT), recrystallization-induced embrittlement, and 

neutron-irradiation-induced embrittlement. To solve these issues, various W materials have been 

developed, which were modified by grain refining [8], work hardening [9], alloying [10], and 

dispersion strengthening [11]. In addition, W-based composites (W fiber reinforced W matrix 

composites [12] and W foil laminated composites [13] etc.) have also been developed to improve 

ductility and to produce pseudo ductility. In our previous studies [14–20], W materials (plates or 

rods) fabricated by powder metallurgy and hot-rolling or swaging have been developed, which 

were modified by potassium (K) doping and alloying by rhenium (Re) to improve mechanical 

properties, resistance to recrystallization and neutron irradiation. As consequences, improvement 

of tensile properties, DBTT, low cycle fatigue life, and recrystallization temperature, and 

suppression of irradiation hardening have been clarified. In contrast, decrease in melting point 

(approximately 3200 °C in W-5%Re) and thermal conductivity (approximately 10% reduction in 

W-3%Re [21]) are known as negative effects of alloying by Re for the application of PFMs. 

Because the performance (structural strength and lifetime etc.) of PFMs under fusion 

reactor environment are not determined by the individual material properties but by their 

synergistic effects, the high heat flux tests are expected to clarify the effectiveness of the modified 

W materials for PFMs. Thermal shock behaviors under ELM-like heat load of the W materials 

modified by K-doping and alloying by Re were investigated in the present study. 

 

2. Experimental 

Pure W, K-doped W, W-3%Re, and K-doped W-3%Re plates with a thickness of 7 mm 
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fabricated by powder metallurgy and hot-rolling and K-doped W rod with a diameter of 20 mm 

fabricated by powder metallurgy and swaging were examined in the present study. A final heat 

treatment of all materials was carried out at 900 °C for stress relief. The concentration of K in the 

K-doped W materials was approximately 30 ppm. All materials were prepared in the as-received 

condition, which are condition after the hot-rolling/swaging and stress relief heat treatment. In 

addition, only pure W and K-doped W-3%Re plates were prepared in the recrystallized condition, 

which are condition after the heat treatment at 2300 C for 1 h. The major chemical composition, 

heat treatment condition, abbreviation of material name, grain size [14–20], recrystallization 

temperature [16], tensile strength [18, 19], DBTT by tensile test [18, 19], and inverse pole figure 

(IPF) images obtained by an electron backscatter diffraction (EBSD) of materials evaluated in the 

present study are summarized in table 1. 

The thermal shock tests were performed with an electron beam irradiation facility, 

JUDITH 1, at Forschungszentrum Jülich, Germany [6]. Absorbed power densities, base 

temperature, pulse duration, and pulse numbers of this tests were 0.19 and 0.38 GW/m2, 1000 ºC, 

1 ms, and 1000 cycles, respectively. For the thermal shock tests, specimens were prepared to a 

shape with 5 mm along L direction, 12 mm along T (R) direction, and 5–7 mm along S (R) 

direction, where the T direction is perpendicular to the L and S direction of the plates. The 

direction and area of heat loading were L direction and 4 mm × 4 mm, respectively. The heat 

loaded surface was polished to an arithmetic mean surface roughness, Ra, of approximately 0.1 

m. 

The maximum surface temperatures during thermal shock tests can be predicted by the 

following equation [22]; 

0.5

2
t

T P
c

      (1) 

where T, P, t, , , and c are temperature change, absorbed energy density (0.19 or 0.38 GW/m2), 

heat load time (1 ms), thermal conductivity, density, and specific heat. By using this equation and 

experimental values of , , and c [17, 21], approximate maximum surface temperature was 

calculated to 1360 and 1730 °C under 0.19 and 0.38 GW/m2 irradiations, respectively. 

The post-mortem analyses to evaluate the damage caused by the thermal shock tests 

were carried out, which consisted of 1) observation of the damage of the heat loaded surface using 

a scanning electron microscope (SEM) and an optical microscope (OM), 2) evaluation of the 

crack distribution and length by observation from the cross-sectional surface along the heat 

loading direction using an OM, and 3) profilometry to measure the arithmetic mean roughness, 

Ra, of the heat loaded surface. 
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3. Results and discussion 

Surface images after thermal shock tests are shown in Fig. 1. The cracks could be 

distinguished into two types; one is a micro crack with relatively short length (order of 10–100 

m) and the other is a macro crack with relatively long length (order of millimeter). 

Micro cracks of KW, W3R, and KW3R heat-loaded at 0.19 GW/m2 and W3R and 

KW3R heat-loaded at 0.38 GW/m2 were formed along the T direction. Considering the 

anisotropic grain structure and the lowest strength along the S direction of hot-rolled plates in the 

as-received condition, the micro cracks could be formed at the boundaries of layered grain 

structure by hot-rolling [19]. In contrast, micro cracks of PW, PW/Rxx, KW3R/Rxx, and KW/Rod 

heat-loaded at 0.19 GW/m2 and PW, PW/Rxx, KW, KW3R/Rxx, and KW/Rod heat-loaded at 0.38 

GW/m2 were formed along non-particular directions. Considering no anisotropy in the grain 

boundary strength of the recrystallized materials and the rod materials along radial direction in 

the as-received condition, the micro cracks could be formed along the grain boundaries. The as-

received materials with relatively low TRxx and high DBTT (PW), as-received materials with 

relatively low strength and high DBTT (KW/Rod), and the recrystallized materials (PW/Rxx and 

KW3R/Rxx) with intrinsic low grain boundary strength and high DBTT showed micro cracks 

along the grain boundaries even under the low power density [18, 19]. In contrast, even under the 

heat load at 0.38 GW/m2, the W3R and KW3R with relatively high TRxx and low DBTT showed 

the micro cracks along the T direction. Based on these surface observations, the formation site of 

micro cracks in hot-rolled plate materials could be changed from the boundaries of layered grain 

structure to the grain boundaries, which might be caused by the progress of recrystallization 

resulting in the disappearance of the anisotropy in the grain boundary strength, decrease in the 

grain boundary strength, and increase in the DBTT. Although the KW/Rod has relatively high 

TRxx, the micro cracks formed at the grain boundaries even under the low power density, which 

might be attributed to the relatively low strength and high DBTT [18]. 

Macro cracks along T direction were only observed in the PW and KW3R under the 

heat load at 0.38 GW/m2. Based on the experimental TRxx and the calculated maximum surface 

temperature, the recrystallization would progress rapidly in the PW under the heat load at 0.38 

GW/m2. Therefore, the macro cracks of PW could be formed by the coalescence of the micro-

cracks along the grain boundaries after the recrystallization progressed. In contrast, the 

recrystallization would progress slowly in the KW3R. Therefore, the macro cracks of KW3R 

could be formed by the coalescence of the micro-cracks along the boundary of layered grain 

structure by hot-rolling before the recrystallization progressed. However, the reasons why macro 

cracks were formed only in these two materials are not clear at the moment. Further investigations 

to clarify the detailed mechanism of the micro and macro crack formation are planned as future 

work. 
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Evaluation of the crack depth by observation from the cross-sectional surface along the 

heat loading direction was conducted on the as-received materials, as shown in Fig. 2. Cracks 

with a lot of number below 8 m in depth were observed in all materials, which correspond to 

the micro cracks observed from the heat-loaded surface. In contrast, cracks with small number 

above 200 m in depth were observed only in the PW and KW3R, which correspond to the macro 

cracks observed from the heat-loaded surface. The number of the micro cracks and the depth of 

the deepest micro crack of the KW, W3R, and KW3R were smaller and shorter compared to the 

PW, respectively. In contrast, no significant difference of the number and depth of micro cracks 

between the PW and KW/Rod were observed. Based on these evaluations from the cross-sectional 

surfaces, the W materials with relatively high TRxx and low DBTT, which were improved by the 

K-doping and alloying by Re, could show the suppressed formation of the micro cracks compared 

to the PW. Although the KW/Rod has relatively high TRxx by the K-doping, no significant 

difference between the PW and KW/Rod could be observed because of the relatively low strength 

and high DBTT of the KW/Rod [18].  

Fig. 3 shows the relationship between annealing temperature before thermal shock tests 

and surface roughness, Ra, produced by thermal shock tests. Under the heat load at 0.19 GW/m2, 

the changes of Ra from the initial value (approximately 0.1 m) by thermal shock tests were very 

small except the PW/Rxx. In contrast, under the heat load at 0.38 GW/m2, Ra increased into 

approximately 1 m by thermal shock tests except the KW and KW/Rod, whose Ra were more 

than 2 m. According to the surface observation shown in Fig. 1, relatively large Ra of KW might 

be influenced by the roughened surface, while that of KW/Rod might be influenced by the widely-

opened cracks because surface of this material was relatively smooth. Although the 

recrystallization influenced significantly on the Ra of several kinds of pure W reported by Pintsuk 

et al [23], no significant increase in Ra by recrystallization was observed in the PW and KW3R 

of the present study. Further investigations to clarify the correlation between the roughness change 

and material properties and effect of recrystallization are planned as future work. 

 

4. Conclusion 

Thermal shock behaviors under ELM-like heat load of the pure W, K-doped W, W-3%Re, 

and K-doped W-3%Re plates and K-doped W rod were investigated to clarify the effect of K-

doping and alloying by Re. The results of this study were summarized as follows: 

 

1) The cracks could be distinguished into two types; one is a micro crack with relatively short 

length and the other is a macro crack with relatively long length. 

2) The formation site of micro cracks in hot-rolled plate materials could be changed from the 

boundaries of layered grain structure to the grain boundaries, which might be caused by the 
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progress of recrystallization. The swaged rod material showed micro crack formation at the 

grain boundaries regardless of the test conditions. 

3) The W materials with relatively high recrystallization temperature and low DBTT (K-doped 

W, W-3%Re, and K-doped W-3%Re plates), which were improved by the K-doping and 

alloying by Re, could show the suppressed formation of the micro cracks compared to the 

pure W. However, K-doped W-3%Re plate appeared to show small number of larger cracks 

than either K-doped W or W-3%Re plates. 
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Fig. 3 Relationship between annealing temperature before thermal shock tests and surface 

roughness produced by thermal shock tests of PW, KW, W3R, KW3R, and KW/Rod. Roughness 

data of four kinds of pure W reported by Pintsuk et al. [23] are also plotted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Single column figure 
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