001     875332
005     20210130004918.0
024 7 _ |a 10.1016/j.rse.2020.111806
|2 doi
024 7 _ |a 0034-4257
|2 ISSN
024 7 _ |a 1879-0704
|2 ISSN
024 7 _ |a 2128/25124
|2 Handle
024 7 _ |a altmetric:81398960
|2 altmetric
024 7 _ |a WOS:000532837400007
|2 WOS
037 _ _ |a FZJ-2020-01955
082 _ _ |a 550
100 1 _ |a Gruber, A.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Validation practices for satellite soil moisture retrievals: What are (the) errors?
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1592827961_25977
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This paper presents a community effort to develop good practice guidelines for the validation of global coarse-scale satellite soil moisture products. We provide theoretical background, a review of state-of-the-art methodologies for estimating errors in soil moisture data sets, practical recommendations on data pre-processing and presentation of statistical results, and a recommended validation protocol that is supplemented with an example validation exercise focused on microwave-based surface soil moisture products. We conclude by identifying research gaps that should be addressed in the near future.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a De Lannoy, G.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Albergel, C.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Al-Yaari, A.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Brocca, L.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Calvet, J.-C.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Colliander, A.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Cosh, M.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Crow, W.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Dorigo, W.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Draper, C.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Hirschi, M.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Kerr, Y.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Konings, A.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Lahoz, W.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a McColl, K.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Montzka, C.
|0 P:(DE-Juel1)129506
|b 16
700 1 _ |a Muñoz-Sabater, J.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Peng, J.
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Reichle, R.
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Richaume, P.
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Rüdiger, C.
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Scanlon, T.
|0 P:(DE-HGF)0
|b 22
700 1 _ |a van der Schalie, R.
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Wigneron, J.-P.
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Wagner, W.
|0 P:(DE-HGF)0
|b 25
773 _ _ |a 10.1016/j.rse.2020.111806
|g Vol. 244, p. 111806 -
|0 PERI:(DE-600)1498713-2
|p 111806 -
|t Remote sensing of environment
|v 244
|y 2020
|x 0034-4257
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/875332/files/1-s2.0-S0034425720301760-main.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/875332/files/validation_good_practice_rev1.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/875332/files/validation_good_practice_rev1.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/875332/files/1-s2.0-S0034425720301760-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:875332
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 16
|6 P:(DE-Juel1)129506
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b REMOTE SENS ENVIRON : 2017
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b REMOTE SENS ENVIRON : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21