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A B S T R A C T

This paper presents a community effort to develop good practice guidelines for the validation of global coarse-
scale satellite soil moisture products. We provide theoretical background, a review of state-of-the-art meth-
odologies for estimating errors in soil moisture data sets, practical recommendations on data pre-processing and
presentation of statistical results, and a recommended validation protocol that is supplemented with an example
validation exercise focused on microwave-based surface soil moisture products. We conclude by identifying
research gaps that should be addressed in the near future.

1. Introduction

The validation of soil moisture data sets aims to provide quantita-
tive information about their quality by estimating systematic and
random errors through analytical comparison to reference data, which
is presumed to closely represent the truth (Justice et al., 2000; JCGM,
2008). For satellite-derived products, this task is far from trivial be-
cause high-quality reference data are virtually unavailable on a global

scale at the coarse spatial resolution of space borne microwave instru-
ments that are predominantly used for soil moisture retrievals
(~101 − 103 km2), and the retrieval quality is affected by numerous
spatially and temporally variable factors (i.e. climatic, topographic and
land cover conditions as well as instrument characteristics and the re-
trieval algorithm structure) (Ochsner et al., 2013; Crow et al., 2012;
Molero et al., 2018).

A host of methods exists to reconcile the distinct spatio-temporal
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characteristics of satellite and reference data sets (sampling and over-
pass times, penetration depths, representativeness errors, etc.; Wang
et al., 2012; Albergel et al., 2008; Gruber et al., 2013a; Nicolai-Shaw
et al., 2015; Colliander et al., 2017a), which is required before calcu-
lating various performance metrics (correlation coefficients, root-mean-
square-differences, triple collocation-based metrics, etc.; Entekhabi
et al., 2010a; Albergel et al., 2013; Gruber et al., 2016a; Loew et al.,
2017). Given the complexity of the validation problem, however, am-
biguous results for the quality and ranking of satellite soil moisture
products can be found in the literature (e.g., Wagner et al., 2014) de-
pending on which pre-processing and evaluation strategies were fol-
lowed and which reference data were used. This paper is a community
effort that addresses this issue and aims towards standardizing good
practices for the validation of satellite-based near-surface soil moisture
retrievals, building upon ongoing international activities.

1.1. Towards standardized validation practices

Many efforts have been made to assess and standardize validation
practices across Earth observation (EO) communities (Zeng et al., 2015;
Loew et al., 2017; Su et al., 2018). In the following we summarize ac-
tivities most relevant for satellite soil moisture products.

1.1.1. CEOS LPV
The main authority that guides validation activities for satellite-

retrieved data of biogeophysical variables is the Committee on Earth
Observation Satellites (CEOS) Working Group on Calibration and
Validation (http://ceos.org/ourwork/workinggroups/wgcv/; last ac-
cess: 1 July 2019). Activities related to soil moisture are coordinated by
its Land Product Validation (LPV) subgroup (https://lpvs.gsfc.nasa.
gov/; last access: 1 July 2019). The CEOS LPV defines four validation
stages (see Table 1) that represent the level of sophistication of vali-
dation protocols employed for a particular data product. Relevant for
the work presented here is that reaching validation stage 3 requires the
implementation of a sophisticated validation framework, as illustrated
in Fig. 1. In such a framework, standardized community-agreed
methods that are ideally described in a “Validation Good Practice
Document” should be employed using fiducial reference data (see
Section 2) to generate standardized validation reports. With this paper
we aim at providing such a document. The last validation stage 4 is
reached once these validation reports are updated on a regular (at least
annual) basis.

1.1.2. Quality assurance frameworks
The CEOS endorses the Quality Assurance Framework for Earth

Observation (QA4EO; http://qa4eo.org/; last access: 1 July 2019) as a
framework to facilitate the provision of traceable quality indicators
which “shall provide sufficient information to allow all users to readily
evaluate the ‘fitness for purpose’ of the data or derived product”
(QA4EO, 2010). The QA4EO provides top-level guidance documents
and templates that encourage the use of metrological principles (see

Section 1.1.3).
In 2014, the Quality Assurance for Essential Climate Variables

(QA4ECV; http://www.qa4ecv.eu/; last access: 1 July 2019) project
was initiated to develop a set of guidelines for the provision of traceable
quality information taking into account the key principles of QA4EO
(Scanlon et al., 2017). So far, quality assurance frameworks have been
developed for selected ECVs, not including soil moisture (e.g., Peng
et al., 2017). The guidelines developed by QA4EO and QA4ECV are
currently embraced by the Copernicus Climate Change Service (C3S;
https://climate.copernicus.eu/; last access: 1 July 2019) in order to
build quality assured, fully traceable Climate Data Records.

In 2018, the Quality Assurance for Soil Moisture project (QA4SM;
https://qa4sm.eodc.eu/; last access: 1 July 2019) was launched, spe-
cifically to create an online validation tool that employs a community-
agreed validation protocol (which we aim to provide with this paper)
for automatically and regularly generating soil moisture product vali-
dation reports, thereby addressing the CEOS validation framework re-
quirements (see Fig. 1).

1.1.3. Metrology and traceability
The CEOS and the QA4EO encourage the use of metrological prin-

ciples for validation purposes, which are described in the “Guide to the
expression of uncertainty in measurement” (GUM; JCGM, 2008). The
GUM is a reference document of the metrological community that
provides strict guidelines on how quality estimates of measurements
should be obtained and reported. In essence, it states that, since they
never perfectly represent the true state of the physical quantity being
measured, all measurements should be complemented by uncertainty
estimates that summarize their probability density function (pdf).
Furthermore, it states that these uncertainties should be obtained by
propagating the uncertainties from all components that contribute to
the measurement process in a way that is traceable back to the “In-
ternational System of Units” (SI) standards, either through the standard
method for the propagation of uncertainty (Parinussa et al., 2011;
Merchant et al., 2017) or, if not possible analytically, through Monte
Carlo simulations (JCGM, 2008).

However, while being relatively straightforward in a laboratory or
numerical environment, the traceable propagation of uncertainties in
space borne remote sensing measurements and retrievals thereof, in
particular of soil moisture, faces two particular challenges. First, foot-
prints of current microwave instruments used for retrieving soil
moisture span over tens to thousands of square kilometers, thereby
covering a large variety of climatic, topographic, and land cover con-
ditions. Although certain large-scale homogeneous regions are used for
calibrating instruments and determining Level 1 (L1) backscatter or
brightness temperature uncertainties (e.g., rainforests or polar snow
fields; Figa-Saldaña et al., 2002; Macelloni et al., 2006), it is virtually
impossible to obtain global perfectly traceable uncertainty estimates
representing all possible measurement conditions. Second, uncertainty
propagation assumes that the models used to propagate uncertainties
are themselves perfect (Parinussa et al., 2011). For satellite soil

Table 1
Validation stages as defined by CEOS (modified from https://lpvs.gsfc.nasa.gov/; last access: 1 July 2019).

Validation stage Definition

0 No validation. Product accuracy has not been assessed. Product considered beta.
1 Product accuracy is assessed from a small (typically < 30) set of locations and time periods by comparison with in situ or other suitable reference data.
2 Product accuracy is estimated over a considerable set of locations and time periods by comparison with reference in situ or other suitable reference data.

Spatial and temporal consistency of the product and consistency with similar products has been evaluated over globally representative locations and time
periods. Results are published in the peer-reviewed literature.

3 Uncertainties in the product and its associated structure are well quantified from comparison with reference in situ or other suitable reference data.
Uncertainties are characterized in a statistically rigorous way over multiple locations and time periods representing global conditions. Spatial and temporal
consistency of the product and with similar products has been evaluated over globally representative locations and periods. Results are published in the peer-
reviewed literature.

4 Validation results for stage 3 are systematically updated when new product versions are released and as the time-series expands.

A. Gruber, et al.



moisture retrievals, this is particularly problematic because un-
certainties resulting from simplifications and assumptions in both the
L1 processing (i.e. geometric correction and radiometric calibration)
and the Level 2 (L2) soil moisture retrieval algorithms cannot be ac-
counted for. Taken together, these issues render the reliable and
traceable propagation of uncertainties from raw measurements through
the whole geophysical parameter retrieval process impossible. The soil
moisture and other EO communities have established certain strategies
to recover this broken traceability chain by evaluating the soil moisture
estimates post retrieval against a range of reference data from various
sources. Section 2 will discuss the requirements and current availability
of such reference measurements or estimates suited for validation ac-
tivities. Before entering those discussions, it is necessary to provide
some relevant terminology.

1.2. Terminology

The CEOS and the QA4EO encourage the use of the terminology
used within the metrological community as described in the
“International Vocabulary of Metrology” (VIM; JCGM, 2012). However,

there is a certain level of ambiguity in the existing EO literature, and
even within the VIM and the GUM, regarding the usage of important
terms such as errors, uncertainties, validation, and others. For a com-
prehensive summary of the most common definitions (from the VIM,
the CEOS, and other sources) we refer the reader to Loew et al. (2017).
For the purpose of this paper we stress that:

• in the scientific literature, the term validation is ubiquitous, yet its
meaning and whether or not anything can actually be validated -
given the fundamental problem of an unknown “truth” - has been
subject to a decade-long debate (Rykiel Jr, 1996). No consensus has
been found yet, because this is mainly a philosophical question. In
the Earth sciences, validation is used rather loosely and is often
distinguished from the term evaluation such that validation is used to
refer to bias or uncertainty assessment using highly accurate or at
least well traceable in situ reference data (often misleadingly re-
ferred to as “ground truth”; see Section 3.2), whereas evaluation is
used to refer to the comparison against other coarse-resolution sa-
tellite or modelled data with supposedly less well-defined un-
certainties. However, ground reference data that could serve as

Fig. 1. Validation framework as defined by CEOS (from https://lpvs.gsfc.nasa.gov/; last access: 1 July 2019).
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reliable proxy for soil moisture retrievals at a satellite scale are
practically non-existent (with the exception of a marginally small
number of heavily-equipped validation sites; see Section 2.2.1).
Therefore, we more generally refer to validation as the holistic
process of gathering information from as many independent sources
as possible to enable a reliable quantitative judgement of the error
characteristics of a particular data set. This includes all, evaluation
against ground measurements, comparison with estimates from land
surface models, and satellite inter-comparisons. The final declara-
tion of a certain product to be valid, however, requires the specifi-
cation of target requirements for an intended use. As we will discuss
later (see Section 3.8.2 and Section 5), no meaningful requirements
have yet been defined for satellite soil moisture applications;

• the term measurement refers to a quantity directly observed by a
sensor (also called the measurand), whereas the terms estimate and
retrieval refer to a related quantity that has been derived from the
measurand. Accordingly, satellite sensors measure radiances from
which soil moisture or other quantities are being estimated or re-
trieved. Note, however, that also in situ sensing technology measures
only quantities related to water content, such as dielectric constants,
capacitance or weight, from which water content estimates are de-
rived. Notwithstanding, in situ soil moisture estimates are virtually
always referred to as measurements, and we will stick to this con-
vention;

• the term error refers to the deviation of a single measurement (es-
timate) from the true value of the quantity being measured (esti-
mated), which is always unknown, whereas the term uncertainty
refers to the probability distribution underlying an error. For vali-
dation purposes, this probability distribution is the actual quantity
of interest;

• according to the GUM, the uncertainty of a measurement (estimate)
generally contains both systematic and random components. The
laboratory environment of metrological practices typically allows
for thorough measurement calibration, where it is assumed that
systematic errors can be properly determined and corrected.
Satellite soil moisture retrievals, however, usually contain con-
siderable systematic errors which, especially for model calibration
and refinement, provide better insight when estimated separate
from random errors. Therefore, we use the term bias to refer to
systematic errors only and the term uncertainty to refer to random
errors only, specifically to their standard deviation (or variance);

• in the EO validation literature, bias is commonly estimated as the
temporal mean difference between two data sets. We follow the
broader statistical definition of bias as auto-correlated error, or as a
property of an estimator to systematically over- or underestimate
some quantity (Dee, 2005). For better separability of its compo-
nents, we use the terms first-order bias and second-order bias to refer
more specifically to additive and multiplicative systematic errors,
respectively (see Section 3.4.1);

• the terms trueness, precision, and accuracy are popular antonyms for
systematic errors, random errors, and the combined systematic plus
random errors, respectively (JCGM, 2012). However, trueness and
precision are very rarely used in the soil moisture validation lit-
erature and the term accuracy is often ambiguously used to refer to
either systematic or random errors alone; and

• the concept of uncertainty is closely related to the concept of con-
fidence intervals. Both aim at describing the pdf underlying an es-
timate, although the term uncertainty is more commonly used for
describing the pdf behind an estimate that results from measure-
ment or retrieval errors (see Section 3.1), whereas the term con-
fidence interval is more commonly used for describing the pdf behind
statistical parameters (such as statistical moments or validation
metrics that derive from these moments) that results from finite
sample sizes (see Section 3.5).

The remainder of this paper is organized as follows. Section 2

describes the most common reference data sources used for soil
moisture validation. Section 3 discusses relevant theoretical aspects and
the most common methods (including data pre-processing) for assessing
soil moisture data quality. Section 4 presents a validation guidance
protocol that has been developed by a gathering of experts across the
community with an example implementation of that protocol provided
in Appendix A. Finally, Section 5 discusses research gaps that should be
addressed in the near future.

2. Reference data

The term fiducial reference measurements is often used to refer to a
suite of independent, fully characterized, and traceable measurements
that meet the requirements on reference standards as described by
QA4EO (Fox, 2010), which should be used to assess the quality of EO
products. However, although highly accurate in situ soil moisture
measurements exist and uncertainties of the measurement devices can
be reliably determined through laboratory and field calibration activ-
ities (Cosh et al., 2005; Rüdiger et al., 2010; Caldwell et al., 2018),
using such point-scale measurements for evaluating satellite soil
moisture data sets over large areas is a very difficult task owing to the
coarse resolution of space borne microwave instruments and vast het-
erogeneities across landscapes (Cosh et al., 2004, 2006; Famiglietti
et al., 1999; Brocca et al., 2010a; Miralles et al., 2010; Crow et al.,
2012; Nicolai-Shaw et al., 2015; Molero et al., 2018). While general
calibration functions can yield soil moisture measurement uncertainties
in the order of 0.02 to 0.03 m3m−3 (Seyfried et al., 2005), which can be
improved to below 0.005 m3m−3 when applying a dedicated field ca-
libration (Bogena et al., 2017), spatial representativeness errors that
arise when using in situ sensors to represent soil moisture variations at
the satellite scale (see Section 3.2) can easily exceed these numbers
(Gruber et al., 2013a).

For satellite validation purposes, numerous field and airborne
campaigns have been carried out to obtain reliable satellite footprint
scale reference data and to quantitatively assess the potential spatio-
temporal representativeness (see Section 3.2) of single or small sets of
in situ soil moisture stations (Famiglietti et al., 2008; Cosh et al., 2008;
Brocca et al., 2012; McNairn et al., 2015). Additionally, validation
activities are complemented with land surface model output and other
satellite products for comparison to get as complete a picture as pos-
sible of a product's error characteristics (Brocca et al., 2010b; Draper
et al., 2013; Al-Yaari et al., 2014; Dorigo et al., 2015; Kerr et al., 2016;
Miyaoka et al., 2017). The various reference data sources and their
limitations are discussed below. Some publicly available reference data
sources that are commonly used for satellite soil moisture validation are
listed in Table 2.

2.1. Field campaigns

Field campaigns are labor-intensive studies that use highly accurate
measurement techniques to obtain reliable and traceable representa-
tions of larger scale average soil moisture. Additionally, many field
campaigns collect other relevant surface properties such as soil texture,
surface roughness, vegetation cover, etc. The campaigns provide
snapshots in time that have a set of parameters characterized in detail
and can answer certain specific questions related to the calibration and
validation of soil moisture products. However, the full validation of
satellite products requires long and consistent time series (see Section
3.4). Therefore, a number of field campaigns have supported this goal
by focusing on various specific aspects for improving the scalability of
in situ measurement networks to remote sensing footprint size. An ex-
ample of this is the establishment of temporally stable locations
(Vachaud et al., 1985; Starks et al., 2006) that sufficiently capture sub-
pixel heterogeneities, allowing the continuous observation of satellite
footprint-scale areas with sufficient and well-characterized accuracy.
Moreover, field experiment often supplement the ground measurements
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with airborne observations. Airborne observations can be used to
evaluate soil moisture retrievals over a larger area, allowing to assess
the spatial soil moisture (as well as brightness temperature and back-
scatter) variability within and across multiple satellite grid cells.

Early field campaigns were focused on understanding large-scale
soil moisture dynamics with aircraft support such as the HAPEX-
MOBILHY (Noilhan et al., 1991), the BOREAS (Cuenca et al., 1997), the
Washita’92 (Jackson et al., 1995), and the 1997 Southern Great Plains
Hydrology Experiment (SGP97) campaigns (Jackson et al., 1999).
These experiments assessed the potential of soil moisture remote sen-
sing over larger domains as a part of hydrologic research. This evolved
into satellite associated field campaigns, which can be divided into pre-
launch and post-launch experiments based on their objectives. The Soil
Moisture Experiments (SMEX) in 2002–2004 in the United States
(Jackson et al., 2005; Bindlish et al., 2006, 2008) were designed in
large part for the evaluation of AMSR-E soil moisture products. The
National Airborne Field Experiment (NAFE) in Australia (Panciera
et al., 2008) was designed for pre-launch studies of SMOS, while the
Australian Airborne Calibration/Validation Experiments for SMOS
(AACES; Peischl et al., 2012) targeted the evaluation of SMOS re-
trievals. The objective of the Canadian Experiment for Soil Moisture
(CANEX-10; Magagi et al., 2013) was to contribute to the evaluation of
SMOS and pre-launch activities for SMAP, and the CAROLS airborne
campaigns (Albergel et al., 2011; Zribi et al., 2011) were designed for
the evaluation of SMOS. The SMAP mission also carried out a dedicated
pre-launch campaign in 2012 (SMAP Validation Experiment 2012,
SMAPVEX12; McNairn et al., 2015) and post-launch validation

campaigns in 2015 and 2016 (Colliander et al., 2017b, 2019).
The earlier campaigns established a protocol for the synchronous

collection of ground-based soil moisture measurements with airborne
microwave instrumentation, which was followed in most of the sub-
sequent experiments. In the process of developing standardized data
collection protocols, these field campaigns specifically focused on the
investigation of the spatial distribution of soil moisture and its evolu-
tion with drying or wetting, the soil moisture variability across scales,
and the statistical relationship between spatial standard deviation and
extent scale. These parameters drive the potential representativeness of
in situ measurements for coarse soil moisture product evaluation and
their knowledge hence allows the determination of the number of
ground samples required to obtain sufficiently reliable reference data.
To this end, at many of the experiment locations, the labor-intensive
field campaign observations were supplemented with long-term in situ
monitoring stations, thus providing long-term high-density satellite
validation sites.

2.2. In situ networks

A large number of in situ soil moisture networks exist worldwide
with different quality and spatial sampling densities as well as varying
sensing depths (Dorigo et al., 2011b; Babaeian et al., 2019). For vali-
dation purposes, the soil moisture community distinguishes between
dense networks, which have a large number of soil moisture stations
located within single satellite footprints, and sparse networks, where
footprint-scale areas usually contain only a single or very few soil

Table 2
Summary of publicly available reference data sources commonly used for satellite soil moisture validation (links last accessed: 1 July 2019).

Name Description Reference

ISMN Data hosting facility for sparse soil moisture networks http://ismn.geo.tuwien.ac.at/ (Dorigo et al., 2011a, 2011b)
CVS Openly available Core Validation Site (CVS) data that have been specifically processed for SMAP

validation.
https://nsidc.org/data/nsidc-0712

GLDAS NASA's global modelling and data assimilation system https://ldas.gsfc.nasa.gov/gldas/
MERRA NASA's global reanalysis data sets https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
ERA ECMWF's global reanalysis data sets https://www.ecmwf.int/en/forecasts/datasets/browse-reanalysis-

datasets/

Fig. 2. Currently available stations from sparse networks hosted by the ISMN (from https://www.geo.tuwien.ac.at/insitu/data_viewer/, last access: 1 July 2019).
Colors represent different station hosting networks.
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moisture stations, although the quantitative cut-off between the two is
not well-defined. The overall global coverage of in situ soil moisture
networks (accessible and suited for satellite soil moisture evaluation) is
unevenly distributed across the globe and - with a few exceptions -
particularly scarce in the tropical regions, the Southern Hemisphere and
boreal regions (Fig. 2; Ochsner et al., 2013).

2.2.1. Dense networks
To meet the requirements on fiducial reference data (Fox, 2010), the

SMAP Calibration and Validation (Cal/Val) Team defined certain cri-
teria for dense measuring networks, so-called core validation sites,
ensuring that they provide a traceable representation of footprint-scale
soil moisture and therefore allow for a reliable assessment of satellite
soil moisture data quality. Currently, 18 densely stationed and thor-
oughly calibrated in situ measurement sites fulfil these requirements
(Jackson et al., 2012; Colliander et al., 2017a), operated by in-
dependent SMAP Cal/Val partners.

These SMAP Cal/Val partners have a diverse heritage. Some net-
works were originally deployed for Cal/Val of the AMSR-E product
(Martínez-Fernández and Ceballos, 2005; Jackson et al., 2010), SMOS
(Bircher et al., 2012; Smith et al., 2012; Djamai et al., 2015), or SMAP
(Caldwell et al., 2019), while others evolved from hydrologic mon-
itoring networks (Bogena et al., 2018) or from some other purpose such
as aircraft validation projects like AIRMOSS (Moghaddam et al., 2010).
During the SMAP project, several networks were selected as potential
candidate sites for Cal/Val activities. The candidate networks whose
accuracy versus physically collected volumetric soil moisture was al-
ready demonstrated and documented in a traceable manner, were
promoted to core validation sites. To date, these sites are considered to
provide the best possible ground reference data for satellite footprint-
scale soil moisture dynamics (Colliander et al., 2017a; Chen et al.,
2019).

2.2.2. Sparse networks
A host of other operational and experimental in situ sites exist

worldwide, operating soil moisture measurement stations that are po-
tentially suited for satellite soil moisture evaluation yet with a con-
siderably smaller station density and often lacking information on their
coarse-scale representativeness and their own inherent error char-
acteristics (Gruber et al., 2013a; Chen et al., 2017). Nonetheless, these
sites are valuable to complement core validation sites due to their
considerably larger spatial coverage across a variety of climatic regimes
and biomes (see Section 3).

An important source for data from sparse networks is the
International Soil Moisture Network (ISMN; Dorigo et al., 2011a,
2011b), which is a data hosting facility that harmonizes soil moisture
measurements from in situ networks worldwide, applies automated and
uniform quality control procedures to flag suspicious measurements
(Dorigo et al., 2013), and distributes them on a cost-free basis in a
common format (http://ismn.geo.tuwien.ac.at/; last access: 1 July
2019). The ISMN was established by ESA in the framework of SMOS
Cal/Val activities. Currently, it contains data from more than 2400
stations worldwide, operated across 59 different measurement net-
works (see Fig. 2) including historical networks that are no longer op-
erational. In addition to soil moisture, many networks provide mea-
surements of other variables such as precipitation or temperature as
well as ancillary information such as soil texture or land cover. Note,
however, that sensor technologies and data quality vary greatly across
networks and measurement stations (Dorigo et al., 2011b; Babaeian
et al., 2019).

2.3. Model simulations

Due to the limited coverage and representativeness of ground re-
ference data, validation activities are complemented with soil moisture
simulations from land surface models (LSMs) as an alternative reference

data source (Lahoz and De Lannoy, 2014). Model simulations can
provide spatially complete global soil moisture maps at a spatial (grid)
resolution similar to that of satellite footprints, but they may still
contain considerable representativeness errors (see Section 3.2) origi-
nating from simplifications of sub-grid heterogeneities, a scale-mis-
match of the underlying atmospheric forcing data, errors in the model
parameterization, or simply because the meaning of the modelled “soil
moisture” is different (e.g. representing a different layer depth or ex-
pressed in different units). Moreover, biases and uncertainties in model
simulations are highly variable and often also not well quantified
(Koster et al., 2009; Albergel et al., 2013), making it difficult to sepa-
rate satellite retrieval errors from modelling errors in a direct com-
parison (see Section 3).

Some examples of readily available global model-based data sets
that have been used for satellite soil moisture evaluation (Albergel
et al., 2012; Al-Yaari et al., 2014; Kerr et al., 2016; Dorigo et al., 2017;
Gruber et al., 2017; Miyaoka et al., 2017) include simulations from
NASA's Global Land Data Assimilation System (GLDAS; Rodell et al.,
2004), NASA's Modern-Era Retrospective analysis for Research and
Applications (MERRA) land data products (Reichle et al., 2011, 2017c),
and the European Center for Medium-Range Weather Forecasts
(ECMWF) Land Surface Reanalysis (ERA-Interim/Land) data sets
(Balsamo et al., 2015).

2.4. Satellite products

A multitude of soil moisture products from different satellite sensors
(Babaeian et al., 2019) are commonly used as additional coarse re-
solution reference data sets for validation purposes, either for con-
sistency assessment through direct comparison (Al-Yaari et al., 2014;
Burgin et al., 2017), or within triple collocation analysis (Dorigo et al.,
2010; Draper et al., 2013, see Section 3). Like model simulations and
sparse networks, they typically lack reliable and traceable bias and
uncertainty characterization. Also, available satellite sensors observe at
different wavelengths, polarizations, and incidence angles and have
therefore a varying sensitivity to soil moisture (Ulaby et al., 2014).
Hence, the information gleaned from a direct comparison is limited (see
Section 3.4.2). Furthermore, different satellite retrieval products (and
model simulations) can use similar ancillary information such as tem-
perature and/or vegetation information in a radiative transfer model,
resulting in correlated errors (Gruber et al., 2016b) which may com-
plicate a fair data comparison (see Section 3.4.2). Comprehensive lists
of commonly used and publicly available satellite soil moisture pro-
ducts, including some validation information where available, can be
found at https://lpvs.gsfc.nasa.gov/producers2.php?topic=SM (last
access: 1 July 2019) and in Babaeian et al. (2019).

3. Theory

This section provides the theoretical background for error char-
acterization and how it relates to satellite soil moisture validation, in-
cluding the assumptions, limitations and pre-processing steps involved.
Although our main focus here is the validation of near-surface satellite
soil moisture products, many of the principles discussed below can be
equally applied to assess the quality of soil moisture products from
other sources, as well as of other biogeophysical variables (Loew et al.,
2017).

3.1. Errors

An estimation error ex is defined as the deviation of an estimate x, in
our case a satellite soil moisture retrieval, from the true state t of the
quantity being estimated (JCGM, 2008):

=e x tx (1)

Important for understanding errors is that the “truth” is a
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hypothetical concept. For the case of space borne microwave instru-
ments, actual satellite footprints are overlapping elliptical areas with
strong signal intensity gradients from the footprint center outwards
(depending on the antenna gain pattern) and varying, surface property
dependent signal penetration depth (Ulaby et al., 2014). Horizontal
footprint boundaries are commonly defined as the 3 dB region, i.e. the
region of the antenna pattern projection on the ground where the gain
is within 3 dB (50%) of the peak value. Products derived thereof are
typically sampled onto spatial grids with sharp boundaries between
grid cells and a constant layer depth to facilitate further geospatial
analysis (Bartalis et al., 2006; Brodzik et al., 2012; Bauer-
Marschallinger et al., 2014). The “true” soil moisture signal that drives
the microwave measurement and the subsequent gridded soil moisture
retrieval will therefore never be the real average soil moisture of the
grid cell to which the retrieval is assigned. Moreover, for validation
purposes, the unknown “truth” is approximated by reference data,
which themselves contain errors and may also be driven by a soil vo-
lume that is different from the satellite grid cell they are supposed to
represent (see Section 2).

3.2. Representativeness

The difference between the true soil moisture that actually affects a
(microwave) measurement associated with a particular grid cell and the
true soil moisture within that grid cell is often referred to as re-
presentativeness error (Gruber et al., 2016a). However, it is worth
noting that representativeness errors have different definitions (Van
Leeuwen, 2015). The remote sensing community mostly assigns them to
the mismatch between the spatial support of a measurement and the
spatial resolution of the defined sampling grid, sometimes also referred
to as scaling error (Miralles et al., 2010; Crow et al., 2012; Gruber et al.,
2013a; Molero et al., 2018). In the modelling community, representa-
tiveness errors mostly refer to a model's lacking ability to represent
reality and, as such, to imperfections in the model structure and in
parameterization (e.g., unresolved sub-grid scale processes). For the
purpose of data validation, it is practical to use a definition that po-
tentially allows us to separate representativeness errors from other
error sources upon estimation. Therefore, recall that the general defi-
nition of error in Eq. (1) requires the choice of a “truth”, which is the
soil moisture state within a target volume (grid cell) that one aims to
estimate as accurately as possible. We define representativeness errors
as those deviations of a product from such chosen, unknown “true”
state, which are related to real soil moisture variations. They can occur,
for example, if the actual measurement footprint of a satellite extends
beyond the grid cell boundaries associated with the chosen, unknown
“truth”, if an inadequate soil parameterization in a radiative transfer
model causes the soil moisture retrievals to represent deeper soil layers
than the chosen, unknown “truth”, or if point-scale ground measure-
ments are used as a reference for grid cell-scale soil moisture dynamics.
As such, representativeness errors of different data sets may be corre-
lated even if the products are otherwise independent.

In summary, representativeness errors have important implications
for validation in that they limit the information one can glean from the
comparison between products, even if a chosen reference product is
itself highly accurate (see Section 3.4.1). Since the temporal and spatial
resolution and sampling of satellite and available reference measure-
ments or estimates hardly ever match, (relative) representativeness
errors will often reach considerable magnitudes (Miralles et al., 2010;
Crow et al., 2012). To minimize their influence, several pre-processing
steps are typically applied, which are discussed in the following section
together with other pre-processing steps that are necessary before va-
lidation metrics can or should be calculated.

3.3. Pre-processing

Pre-processing steps necessary for validation aim to find match-ups

in space and time between measurements and/or estimates that have
different spatial resolutions, are sampled on to different grids, and/or
are acquired at different times. Additionally, depending on the re-
ference data choice, statistical rescaling methods are often applied to
minimize the impact of representativeness errors. Moreover, data pre-
processing typically involves the masking of unreliable satellite re-
trievals and reference measurements or estimates. Lastly, data sets are
sometimes decomposed into different frequency components in order to
separately assess a product's ability of accurately representing short-
term, seasonal, and inter-annual soil moisture variability (Draper and
Reichle, 2015).

3.3.1. Data masking
Satellite-derived soil moisture products are typically accompanied

by a set of quality flags. They can be indicators of suspected con-
tamination of the microwave signals or problems during the retrieval.
Typical examples are indicators for the probability of frozen soil, dense
vegetation coverage, radio frequency interference (RFI), or urban or
water contamination, to name a few (e.g., Parinussa et al., 2011;
Naeimi et al., 2012; Kerr et al., 2012; de Nijs et al., 2015).

The validation of a product should be based only on those retrievals
that are considered “good” for a given application. While masking data
points using binary “use/do not use” flags is straightforward, some
quality flags require the decision of a threshold below or above which
individual retrievals are masked out (e.g., the probability of RFI oc-
currence or the water body fraction), which implies a trade-off between
data quality and measurement density. Typically, data producers pro-
vide recommendations for these thresholds. In addition to the quality
flags inherent in the soil moisture products, auxiliary static and/or
dynamic data from land surface models or other sources are often used
to mask out retrievals that can be considered unreliable. The most
commonly used masking criteria are based on surface and/or air tem-
perature and snow height and/or snow water equivalent estimates
obtained from land surface models, or vegetation-related estimates
(such as vegetation water content or vegetation optical depth) from
satellite sensors or models (Al-Yaari et al., 2014; Dorigo et al., 2015;
Gruber et al., 2017). It should be kept in mind, however, that all quality
flags (both provided alongside a product or derived from an ancillary
source) are based on data which themselves are subject to errors and
are therefore inherently uncertain.

Note that also reference data sets, in particular in situ measure-
ments, also often undergo quality control procedures and provide
quality flags, which should be used to mask out unreliable measure-
ments before using them to evaluate satellite retrievals (as is the case
for example for the ISMN; Dorigo et al., 2013). When comparing biases
or uncertainties of different soil moisture products, the masking pro-
cedures applied to these data sets should be identical in order to
compare the quality of retrievals from measurements that were taken
under the same (or at least similar) conditions. However, if quality flags
that are tailored to one data set are applied to another, some of the
products may appear better or worse than they would when using only
their own inherent quality control. This is especially true if the flags of
one product are much more conservative than those of another. Most
product comparison studies do not take this issue into account. One
possible approach to address it would be to compare biases and un-
certainties from common periods also with those in periods where only
some products provide unflagged soil moisture retrievals (based on
their own quality control) and to put this into perspective with the
temporal measurement density before and after product collocation.
However, this requires the availability of appropriate reference data in
collocated and non-collocated periods as well as the ability to account
for possibly varying accuracy and representativeness of the reference
data in these periods. Also, depending on the overall data density, it
may be difficult to assess biases and uncertainties in these periods due
to the presence of large statistical sampling errors (see Section 3.5).

Finally, we stress that the choice of data masking criteria has a
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considerable impact on the overall validation results and should be
carefully documented, especially for comparing different validation
studies and when assessing long-term changes.

3.3.2. Collocation
Satellite sensors acquire measurements that are irregularly dis-

tributed in space and time owing to their orbiting nature and specific
antenna patterns. In the soil moisture retrieval process, these mea-
surements are typically sampled onto spatial grids (for noise reduction
purposes these grids are often oversampled, i.e. the grid sampling -
sometimes also referred to as grid posting - is typically higher than the
antenna resolution) and sometimes also to regular time steps (e.g.,
00:00 UTC) in order to generate, for example, daily global soil moisture
maps and/or time series (Kerr et al., 2012; O'Neill et al., 2012; H-SAF,
2018; Gruber et al., 2019a). However, neither the resolution nor the
sampling of in situ reference measurements or model simulations ever
perfectly match those of the satellite products being evaluated. Con-
sequently, the process of finding match-ups between satellite and re-
ference data points in space and time, commonly referred to as collo-
cation, is essentially a resampling task (Loew et al., 2017). Since the
spatial resolution of the compared products can be very different
(especially between in situ and satellite/modelled data), statistical re-
scaling methods are often additionally applied in the collocation pro-
cess to minimize the impact of (especially spatial) representativeness
errors on validation metrics.

3.3.2.1. Spatial resampling. In situ measurements are point-scale
measurements that sample only a few cubic centimeters of the soil.
When used for evaluating satellite products, stations from sparse
networks are typically sampled onto the satellite grid using a nearest-
neighbor (NN) search, i.e. by matching the stations to the satellite grid
cells within which they are located (Albergel et al., 2012; Dorigo et al.,
2015; Chen et al., 2017). For dense networks, commonly all stations
that lie within a particular satellite grid cell are (after quality control)
averaged (Jackson et al., 2010; Gruber et al., 2015; Colliander et al.,
2017a), either by calculating the arithmetic mean or by calculating a
weighted average where higher weights are applied to stations that are
expected to be more representative for the grid cell average soil
moisture. Such stations can be identified, for example, via a temporal
stability analysis (Vachaud et al., 1985; Yee et al., 2016), through
Voronoi diagrams (Colliander et al., 2017a), or by using landscape
characteristics such as land cover or soil properties.

When comparing different gridded products (i.e. different satellite
and/or land surface model products), one grid must be selected as the
reference grid onto which the other products are resampled for collo-
cation purposes. This is commonly done using either a NN search or
inverse-distance-weighted (IDW) based approaches (Al-Yaari et al.,
2014; Gruber et al., 2017; Gruber et al., 2019a). However, the resam-
pling provides mainly spatial match-ups of the data sets and can at best
account for some of the spatial representativeness errors of the various
data sets. How exactly these representativeness errors are affected and
propagate into bias and uncertainty estimates will depend on the
chosen reference grid and resampling method, and requires more re-
search. The most common way to reduce spatial (systematic) re-
presentativeness errors is to apply statistical rescaling methods (see
below).

3.3.2.2. Temporal resampling. In situ measurements and land model
estimates are typically sampled more frequently than satellite soil
moisture retrievals. Therefore, the reference measurements and
estimates are matched in time to the irregular satellite observation
times, typically by selecting the temporally closest (NN) reference
measurement or estimate within a pre-defined search window (i.e.
applying a maximum temporal distance threshold; Chen et al., 2017).
Depending on the sampling interval of the reference data sets (for in
situ data typically hourly and for global land surface models typically

one to six hourly) and on whether or not satellite observations have
been a priori resampled already (see above), this can lead to
considerable differences between the actual measurement/estimation
times of collocated satellite and reference data points. The issue is
typically limited when using in situ or model data as reference.
However, if multiple satellite products are evaluated simultaneously,
their different overpass times are usually accounted for by either
picking one of them as (temporal) reference and matching the other
ones against it, or by sampling all satellite products to regularized time
steps (e.g., 00:00 UTC; Gruber et al., 2019a), which in any case favours
the satellite data set whose actual measurement times are closest to the
reference points. Note that the retrieval quality of satellite data sets
may strongly depend on the time of observation. This is especially true
for passive systems, where soil moisture retrievals are known to be
strongly affected by temporal temperature fluctuations and
temperature gradients in soil and vegetation cover (Parinussa et al.,
2015).

Taken together, the different measurement/estimation times of sa-
tellite and reference data sets that have been collocated will induce
temporal representativeness errors, originating from the actual soil
moisture changes that take place during these periods. Often these er-
rors are assumed to be negligible or at least below the noise level of the
products. In principle, one could employ more sophisticated resampling
algorithms to minimize these representativeness errors, for example
auto-regressive interpolation methods with or without auxiliary in-
formation such as precipitation, evapotranspiration, or soil texture.
However, more research is needed to assess the impact of temporal
interpolation approaches on validation metrics.

3.3.2.3. (Statistical) rescaling. The resampling procedures described
above provide data set match-ups in space and time which are
required for statistical comparison (see Section 3.4). As discussed in
Section 3.1, the measurements or estimates of the collocated products
are driven by the soil moisture state of different soil volumes at
different times due to the different underlying actual spatio-temporal
resolution of the data sets. The latter is related to the antenna and
surface properties and cannot be corrected for by common resampling
methods. Therefore, a direct comparison of these products will be
subject to representativeness errors, which may dominate the total soil
moisture retrieval errors (Gruber et al., 2013a; Chen et al., 2017;
Molero et al., 2018). However, owing to the large-scale and auto-
correlated nature of processes that drive soil moisture changes (Crow
et al., 2012), parts of these errors are systematic and can hence be
corrected for by removing relative differences between the considered
data sets (see Section 3.4).

The two most common rescaling approaches are to match either the
temporal mean and standard deviation of the data sets that are to be
compared (Scipal et al., 2008a; Dorigo et al., 2010; Albergel et al.,
2012), or to match their complete cumulative distribution function
(CDF), which additionally corrects for differences in higher statistical
moments in case the products are expected not to be perfectly Gaussian
distributed (Reichle and Koster, 2004; Kumar et al., 2012). However,
any rescaling approach that transforms one data set into the data space
of another (without additional information) assumes the signal-to-noise
ratios (SNRs) of the two involved data sets to be identical, which, since
this is usually not the case, can lead to biased rescaling parameters that
do not fully correct the systematic representativeness errors (see
Section 3.4.2; Stoffelen, 1998; Yilmaz and Crow, 2013). Alternatively,
triple collocation analysis (Stoffelen, 1998; Su et al., 2014; Gruber
et al., 2016a) is often employed, using a third data set to take different
SNRs into account when matching the standard deviation of the un-
derlying soil moisture signals, thereby potentially providing consistent
rescaling parameters (Yilmaz and Crow, 2013).

Note that rescaling soil moisture data sets can equally account for
(systematic) representativeness errors that arise from different spatial
resolution and spatial and temporal mis-alignment, as well as for those
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arising from different vertical measurement support, i.e. wavelength-
dependent penetration depths of satellites, in situ sensor placement
depths, and modelled soil layer thickness (Gruber et al., 2013a). Also, in
addition to correcting for systematic representativeness errors, re-
scaling can implicitly compensate for different units (provided that the
used soil moisture representations are linearly related), most commonly
volumetric soil moisture ([m3m−3]) and the degree of soil saturation
([%]) which are linked through soil porosity as a multiplicative factor
(Walker et al., 2004). This avoids additional biases that are introduced
through the use of inaccurate auxiliary data (such as soil maps) that
would otherwise be needed for unit conversion.

After rescaling, long-term bias estimation is obviously no longer
meaningful as systematic differences between the data sets, which
would normally serve as proxy for biases, have been intentionally re-
moved. However, shorter-term biases as well as random representa-
tiveness errors may remain and can considerably contribute to sub-
sequent uncertainty estimates (see Section 3.4.1).

3.3.3. Signal decomposition
The quality of soil moisture products can vary considerably across

time scales (Su and Ryu, 2015; Draper and Reichle, 2015; Molero et al.,
2018; Gruber et al., 2019a). For example, some soil moisture products
are better at accurately representing the seasonal cycle whereas other
products more accurately capture short-term fluctuations. Therefore,
products are often decomposed into different frequency components
which are then evaluated separately (in addition to the bulk time
series). In Earth sciences, such decomposition is often done using
moving-average windows (Narapusetty et al., 2009). For soil moisture,
a moving window of several weeks, centered on the measurement or
estimation time, is typically used to obtain intra-annual low-frequency
soil moisture dynamics (Albergel et al., 2012; Chen et al., 2017), re-
ferred to as seasonalities. Residuals thereof are referred to as short-term
anomalies which represent higher-frequency, sub-seasonal soil
moisture variations, that is, short-term drying and wetting events. Ad-
ditionally, so-called long-term anomalies are often calculated as re-
siduals relative to a multi-year mean seasonal cycle, referred to as the
soil moisture climatology, which is typically calculated by applying a
moving-average window of similar size (a few weeks) to each day-of-
the-year (DOY), i.e. averaging all measurements or estimates of all
years that fall inside the specified time window around a particular
DOY (Miralles et al., 2010; Draper et al., 2013). These long-term
anomalies contain information about both short-term drying and wet-
ting events and seasonal deviations from the long-term mean seasonal
cycle.

While the evaluation of short-term soil moisture anomalies aims at
assessing a data set's capability of capturing individual drying or wet-
ting events, uncertainties of long-term anomalies represent its perfor-
mance in capturing both short-term variability and inter-annual varia-
tions such as prolonged droughts or floods as well as climate trends.
However, the latter rely on a climatology estimate that requires his-
torical data records in the order of decades (Dorigo et al., 2012), which
are often not available, especially not at the beginning of a new mission
(current microwave missions cover a time period of maximum
5–10 years). Therefore, one often has to rely on uncertainty estimates
for seasonalities and short-term anomalies alone, which jointly drive
uncertainties in long-term anomalies.

3.4. Metrics

After satellite and reference products have been masked, collocated,
and optionally decomposed and/or rescaled, validation metrics can be
calculated. In this section, we summarize commonly used bias and
uncertainty estimators and their underlying assumptions. Other related
metrics exist (e.g., the mean absolute error, Kendall's tau, and many
others), but all are derived from the same statistical moments and have
therefore similar information content. Our goal here is to present the

metrics that are most commonly used for soil moisture validation and
are considered to provide a comprehensive picture of a product's error
characteristics. These metrics also largely coincide with those used in
other EO communities (Loew et al., 2017). We also stress that valida-
tion specifically aims at quantitatively assessing the errors of a data set,
which is different from indirectly evaluating its quality for example by
investigating its skill in a particular application, e.g., drought mon-
itoring (Bolten et al., 2010). Such indirect product evaluation is beyond
the scope of this paper.

3.4.1. Assumptions
The fundamental assumption underlying almost all satellite soil

moisture validation studies is that of additive zero-mean random errors
(εx), and additive (first-order; αx) and multiplicative (second-order; βx)
systematic errors (Gruber et al., 2016a):

= + +x tx x x (2)

This error model applies to both the data set one aims to evaluate
and the reference data sets. Notice that the total error ex in Eq. (1) has
now been separated into its systematic (αx and βx) and random (εx)
components. These components contain instrument errors (i.e. noise
and mis-calibration), errors in the retrieval model and parameteriza-
tion, and other representativeness errors with respect to the assumed
grid cell average soil moisture t (although the boundaries between the
latter two are somewhat fuzzy; see Section 3.1).

To disentangle errors from different data sets and from actual soil
moisture variations, all common data comparison metrics require the
errors to be homoscedastic (i.e. independent from the soil moisture
state, in the literature often referred to as orthogonality with respect to
the truth; Yilmaz and Crow, 2014) and mutually uncorrelated between
products. Remember, however, that the representativeness error com-
ponents of the different products may (by definition) be correlated both
with the truth t and with each other, even if the products are otherwise
independent (see Section 3.1).

All common validation metrics are derived from the first and second
statistical moments of the data sets. This implies that soil moisture too
is - even though in principle deterministic - assumed to behave as a
random variable. Statistical moments are then typically estimated in
the temporal domain (i.e. temporal means, variances, and covariances),
assuming stationarity in soil moisture and the errors (i.e. means and
variances are assumed to be constant over time), and relate to the
various error components as follows:

= +

= +

= +

x tx x

x x t

xy x y t

2 2 2 2

2
,

x

x y (3)

where the overline, σi
2 and σij refer to the (temporal) mean, variance,

and covariance, respectively; and y denotes a reference data set that
follows the same error model as x (Eq. (2)). Because representativeness
errors may contain an orthogonal, a non-orthogonal, and a mutually
correlated component (see above), we combine it with all other random
error in the individual data set's random error variability
σξx

2 = σεx
2 + 2βxσt, εx (containing representativeness and all other

random errors) and the correlated error variability σξx, ξy = βxσt,
εy + βyσt, εx + σεx, εy (driven by representativeness errors only), for
clarity. Systematic representativeness errors are included in the αx and
βx coefficients.

The goal of validation is now to estimate αx and βx, and the standard
deviation of εx (σεx

), i.e. biases and uncertainties in the satellite data set
under evaluation. The properties of the different reference data sets
available (see Section 2) determine which error components will be
dominant in Eq. (3), and consequently, which ones can be estimated by
the available validation metrics (see Section 3.4.3 and 3.4.4).

Note, however, that αx, βx, and σεx contain lumped estimates of all
systematic and random errors that accumulate in the soil moisture
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retrieval process, such as instrument noise, errors in the radiometric
calibration, and imperfections in the retrieval model (e.g., resulting
from the oversimplification and underdetermination of common ra-
diative transfer models; Quast and Wagner, 2016; Wigneron et al.,
2017), which can typically not be disentangled into its individual
components.

3.4.2. Relative and TCA-based metrics: Opportunities and limitations
For discussing the various metrics we will follow the notation of

fiducial reference data (see Section 2) to refer to data sets that provide a
thoroughly calibrated soil moisture proxy at the satellite scale with
traceable uncertainty characteristics (i.e. αy ≈ 0, βy ≈ 1 in Eq. (2)). εy

may be non-zero but σεy

2 has to be at least well determined from la-
boratory experiments and field campaigns and could hence be corrected
for in the validation metrics. As mentioned, only the core validation
sites are currently considered as fiducial reference data capable of
providing a reliable representation of satellite footprint-scale soil
moisture (see Section 2.2.1). They are therefore the only reliable proxy
for bias and uncertainty estimation from direct comparison, but are
limited to very few regions. Non-fiducial reference data refer to coarse-
resolution products such as land surface model simulations or other
satellite data sets which may have non-negligible or non-traceable
biases and uncertainties as well as potentially considerable re-
presentativeness errors, or to in situ data from sparse networks or not
properly calibrated and validated dense networks, both of which are
expected to have larger representativeness errors than coarse-resolution
reference data sets. Therefore, direct comparison against non-fiducial
reference data can only provide information of which data set is sys-
tematically drier or wetter than the other but without relation to a true
grid cell average, and only lumped estimates of the uncertainty of both
compared products. Nonetheless, given their larger-scale and long-term
availability, sparse networks and land surface models are of important
complementary value for validating satellite products. In particular,
one can obtain valuable information about the relative ranking of dif-
ferent products as well as about performance changes over time when
comparing against the same reference product.

Introducing a second reference data set z that follows the same
covariance properties (Eq. (3)) as y (commonly referred to as triple
collocation analysis, TCA; Stoffelen, 1998; Scipal et al., 2008b; Gruber
et al., 2016a) allows, under particular circumstances, simultaneous
estimation of the uncertainty of all three products and also (partly)
isolation of random (relative) representativeness errors (Miralles et al.,
2010; Gruber et al., 2013a; Chen et al., 2017). Note, however, that the
necessity of using two reference data sets instead of one may limit
spatial and temporal data availability. Moreover, while non-orthogonal
and mutually correlated errors are equally problematic for metrics that
rely on one reference data set only (see below), it may be even more
difficult to find a third data set that fulfills these requirements. Com-
monly, any combination of in situ measurements, land surface model
estimates, active-microwave-based retrievals, or passive-microwave-
based retrievals is expected to fulfil this requirement because their
sources of errors are assumed to be mostly independent (Gruber et al.,
2016a), provided that neither of them has been used to generate an-
other (e.g., by assimilating satellite data in to a land surface model;
Reichle et al., 2017a, 2017b). However, several studies suggest that
mutual error correlations may exist between commonly used data set
combinations (Yilmaz and Crow, 2014; Pan et al., 2015), resulting from
representativeness errors (e.g., if a land surface model used within TCA
models a deeper layer than the sensing depth of two satellite data sets
that are used in the triplet) or from unrecognized common data. Ex-
amples for the latter can be found in some SMOS and SMAP products,
which use modelled temperature estimates from ECMWF's Integrated
Forecast System (IFS) and NASA's Goddard Earth Observing System
Model, version 5 (GEOS-5), respectively, as input to the soil moisture
retrieval algorithm (Kerr et al., 2012; O'Neill et al., 2018). Research is
needed to quantify the degree to which that affects inter-comparisons

between the satellite soil moisture retrievals and soil moisture estimates
from models that rely on the same temperature input (such as MERRA2,
ERA-Interim/Land, or others; e.g. Chen et al., 2018). It is therefore
recommended to verify orthogonality and zero error correlation as-
sumptions by using - where available - multiple data set triplets and
checking for consistency between different TCA implementations
(Dorigo et al., 2010; Draper et al., 2013), or by using the recently
proposed TCA extension that utilizes four or more data sets to diagnose
the existence, and estimate the magnitude of error correlations (Gruber
et al., 2016b; Pierdicca et al., 2017).

The following sections discuss the most common bias and un-
certainty metrics, either (i) based on direct comparison between two
data sets, which will be referred to as relative metrics, or (ii) based on
the simultaneous comparison of three products, which will be referred
to as TCA-based metrics. All metrics can be equally applied to soil
moisture anomaly estimates or the raw time series, except for first-order
bias estimators (see below) as the anomaly calculation per definition
removes differences in the mean (see Section 3.3.3).

Note that none of the metrics presented below require assumptions
about the shape of the pdf of the random errors or the true signal
(McColl et al., 2016). However, the bounded nature of soil moisture
may cause violations in the orthogonality assumption if cut-off values
(e.g., zero and the soil porosity as lower and upper physical limit, re-
spectively) are applied to the soil moisture estimates of a particular data
sets. Especially in very dry or very wet regimes, where random errors
would often cause these thresholds to be exceeded, this can result in
considerable biases in all (both relative and TCA-based) uncertainty
metrics.

3.4.3. Bias estimation
Bias estimation is only meaningful against reference data at the

satellite footprint scale, i.e. without considerable representativeness
errors and if no rescaling has been applied (see Section 3.3.2).

3.4.3.1. Temporal mean bias. Bias estimates are commonly based on the
(temporal) mean difference between two data sets (Entekhabi et al.,
2010a):

= = +b x y t( )xy x y x y (4)

Typically, bxy is considered to represent first-order (additive) biases
only. However, as can be seen in Eq. (4), the mean difference is also
sensitive to second-order (multiplicative) biases, amplified by the ac-
tual mean soil moisture content (t ). When using non-fiducial reference
data, bxy provides an indication of which data set is systematically drier
or wetter than the other, but without relation to the assumed true grid
cell average. Moreover, a positive difference in the mean (αx > αy) and
a negative difference in variability (βx < βy) can cause the same sign in
bxy as a negative mean difference and a positive variability difference.
When calculated against fiducial reference data, bxy collapses to

+ t( 1)x x
. That is, it is a direct estimate for biases in the satellite

retrieval, yet it is still susceptible to both first and second-order biases,
and influenced by the average soil moisture conditions.

3.4.3.2. Second-order bias. Most validation studies do not attempt to
estimate second-order biases and neglect their impact on bxy and other
validation metrics such as the (unbiased) Root-Mean-Square-Difference
(see Gupta et al. (2009) and Section 3.4.4). TCA potentially allows for
the direct estimation of second-order biases (Gruber et al., 2016a) as:
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where βx
y denotes the TCA-based second-order bias estimate of x

relative to y which, if y is a fiducial reference data set and if no non-
orthogonal or correlated random representativeness errors exist
(βy ≈ 1, σξx, ξz

≈ 0, σξy, ξz
≈ 0), provides a direct estimate of the
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second-order bias βx. Notice that neither first nor second-order biases in
z influence βx

y. Alternatively, Eq. (5) can also be used for rescaling
purposes (Yilmaz and Crow, 2013; Su et al., 2014; Gruber et al., 2016a,
see Section 3.3.2).

3.4.4. Uncertainty estimation
As discussed, uncertainty estimates aim at representing the pdf of

the random errors (see Section 1.1), which is typically done by means of
their standard deviation (or variance).

3.4.4.1. (Unbiased) Root-mean-square-difference. The most common
relative metric for estimating uncertainty is the Root-Mean-Square-
Difference (RMSD; Entekhabi et al., 2010a):

= = + +

= + + + +

RMSD x y x y
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Since the RMSD is sensitive to both systematic and random errors,
the bias component is - for uncertainty estimation purposes - typically
removed, resulting in the unbiased RMSD (ubRMSD):

= = +

= + +

ubRMSD RMSD b 2

( ) 2

xy xy x y xy

x y t

2 2 2 2

2 2 2 2
,x y x y (7)

The common definition of the ubRMSD specifically corrects for
differences between the mean of the data sets (Entekhabi et al., 2010a).
However, as can be seen in Eq. (7), it remains susceptible to second-
order biases, which are amplified by the actual soil moisture variability
(σt

2). Moreover, as was the case for bxy, this second-order bias de-
pendency in ubRMSDxy persists even when calculated against fiducial
reference data, in which case Eq. (7) collapses to +( 1)

x t

2 2 2

x
. As

discussed in Section 3.3.2, data sets are often rescaled before calcu-
lating validation metrics to account for systematic representativeness
errors, especially when evaluating against data from sparse networks.
This is most commonly done by matching the temporal mean and the
standard deviation of the data sets, or their entire cdf (i.e. also higher
statistical moments). However, as can be seen from Eq. (3), this only
properly corrects for relative differences in β if the SNRs (including
random representativeness errors) of the data sets are equal, which is
very unlikely. Consequently, Eq. (7) will still contain the remaining
difference between βx and the rescaled βy, multiplied with the actual
soil moisture variability, and also random representativeness errors.

3.4.4.2. (Unbiased) Root-mean-square-error. As mentioned in the
previous section, TCA potentially allows for the estimation of relative
rescaling coefficients that are independent from the SNRs of the data
sets (see Eq. (5)), which would allow to fully correct for the second-
order bias component in Eq. (7). Moreover, TCA allows to more directly
estimate the satellite uncertainty (i.e. its error standard deviation σξx

,
commonly referred to as unbiased Root-Mean-Square-Error; ubRMSE)
as:
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= +
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Note that when calculating the ubRMSE using the cross-multiplied
differences instead of the statistical moments, the data sets y and z do
have to be bias-corrected with respect to x a priori using Eqs. (4) and
(5). The absolute value is taken to prevent negative signs in uncertainty
estimates that could occur due to sampling errors (Gruber et al., 2018,

see Section 3.5). As one can see, ubRMSEx is (as opposed to ubRMSDxy in
Eq. (7)) fully unbiased in that it contains neither first nor second-order
biases from both the satellite and the reference data sets, and it also no
longer contains the uncertainties inherent in the reference data pro-
ducts (Gruber et al., 2016a). However, estimates that are unbiased with
respect to the assumed true grid cell average can only be obtained if at least
one fiducial reference data set is available (Chen et al., 2017). More-
over, ubRMSEx is not affected by random representativeness errors in y
and z as long as they are orthogonal and not correlated. Such re-
presentativeness error correlations could occur for example when ap-
plying TCA to in situ measurements together with two coarse resolution
products. This case, however, provides an opportunity to estimate the
representativeness of in situ stations while uncertainty estimates for the
coarse resolution products remain unaffected (Miralles et al., 2010;
Gruber et al., 2013a; Chen et al., 2017). For a more detailed derivation
of how representativeness errors affect the TCA-based uncertainty es-
timates we refer the reader to Vogelzang and Stoffelen (2012) and
Gruber et al. (2016a).

The above described metrics are direct estimators for data set un-
certainty. However, for many applications, how “good” a data set is
depends on how large its uncertainties are relative to the variability of
the actual soil moisture signal. Simply put, the larger the soil moisture
variations one strives to observe, the more easily they can be dis-
tinguished from noise in the measurements or estimates. Therefore,
some metrics aim at estimating the SNR rather than the uncertainty
alone, the most important ones for soil moisture validation being dis-
cussed below.

3.4.4.3. Pearson correlation coefficient
The most common SNR-related relative metric is the linear

(Pearson) correlation coefficient, which is typically described as a
measure for statistical dependency between two data sets. From the
error model in Eq. (3) one can see that it is also a direct, normalized
(between −1 and 1) representation of the SNRs of the two data sets for
which it is calculated (Gruber et al., 2016a):
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with =SNRx
x t

x

2 2

2
and =SNRy

y t

y

2 2

2
. sgn(⋅) denotes the signum function.

When calculated against fiducial reference data, Rxy is a direct re-
presentation of the SNR of the satellite under evaluation (i.e. SNRx).
Notice that the “signal” to which the “noise” in the SNR estimator is
related is the true soil moisture variability scaled with the second-order
satellite bias (i.e. βx

2σt
2). Even if βx could be estimated reliably, for

example from Eq. (5), rescaling does not change the SNR as the un-

certainty would be scaled as well. However, the ratio x t

x

2 2

2
is in fact the

quantity of interest that determines how well signal variations can be
distinguished from noise, regardless of whether systematic errors have
been corrected for (Gruber et al., 2016a), which can be also interpreted
as the (linear) correlation with the true soil moisture signal (McColl
et al., 2014). When Rxy is calculated against non-fiducial reference data,
it is additionally influenced by second-order systematic and random
representativeness errors as well as the uncertainties of that reference
data set. Note that the Pearson correlation coefficient is sometimes
presented squared (Rxy

2), referred to as coefficient of determination and
interpreted as “percentage of variance explained”, which provides a
slightly more intuitive link to to the SNR and may hence be preferable,
even though the information content is identical.

3.4.4.4. TCA-based correlation coefficient
Influences of the reference data set can be again isolated using TCA
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(McColl et al., 2014) by directly estimating Rx as:

= =

+ +

+ +

+

=

+

R

SNR

( )( )

( )( )

1

1

x
xy xz

x yz

x y t x z t

x t y z t

x t

x t x

2

2
,

2
,

2 2 2 2
,

2 2

2 2 2 1

x y x z

x y z

x (10)

As was the case for the ubRMSE, the validity of Eq. (10) requires
that there is no correlation or non-orthogonality between random re-
presentativeness errors, but their individual variance may well be non-
zero. If these assumptions are respected, then Rx will be an unbiased
representation of the correlation between x and the (unknown) hy-
pothetical truth. Consequently, Rx will always be larger than Rxy al-
though this difference decreases as the quality of the reference y in-
creases. Note, however, that Rx only ranges between 0 and 1, as an anti-
correlation (with respect to the true signal) cannot be unambiguously
inferred from the three covariances in Eq. (10). To provide a more in-
tuitive link to the SNR, Rx may also be presented squared (i.e. as TCA-
based coefficient of determination; Rx

2).

3.4.4.5. (Logarithmic) Signal-to-noise ratio
Instead of expressing the SNR normalized between 0 and 1, it is

often estimated directly and linearized by converting it into decibel
(dB) units (Gruber et al., 2016a):

=SNR dB[ ] 10 log || | 1 | 10 logx
x yz

xy xz

x t
2 2 2

2
x (11)

This provides a more direct, linear representation of the ratio be-
tween soil moisture and uncertainty magnitude than Rx, yet the in-
formation content in both metrics is identical; it is simply a different
way of presentation. Note that the SNRx is already being used as a more
coherent (than RMSD or RMSE based metrics) satellite data quality
indicator for defining target accuracy requirements (see Section 3.8.2).

3.5. Statistical significance testing

All the above described (and also most other less common) valida-
tion metrics are based on statistical moments, sampled in time. Since
these estimates are based on finite samples (i.e. the discrete soil
moisture time series), they are subject to sampling errors. The most
common way to deal with statistical uncertainty (i.e. sampling errors)
across science communities is Null Hypothesis Significance Testing
(NHST) using p-values and/or confidence intervals (Wilks, 2011). In a
validation context, typical hypotheses to be nullified are, for example,
that a soil moisture product does not meet a target accuracy threshold
or that one product does not exhibit higher correlation with a reference
product than another. For testing such hypotheses, the sampling dis-
tribution of the statistical estimate under consideration (such as a va-
lidation metric) is constructed based on the magnitude of the estimate
and the size of the sample used to draw this estimate (see below). Then,
either the p-value is calculated, which is the probability of values of the
sampling distribution to be equal to or below (or above, depending on
which tail is considered) the pre-defined Null-value (representing the
Null hypothesis), or the (1 − α) ⋅ 100% confidence interval is con-
sidered. A rejection of the Null-hypothesis is considered statistically
significant, if the p-value is below a pre-defined significance level α
(typically 0.05) or if the (1 − α) ⋅ 100% confidence interval does not
contain the Null-value. When comparing estimates of different samples
(e.g., the performance of different soil moisture products), it is common
to consider their relative difference as statistically significant if their
confidence intervals do not overlap. Note that the term “Null-value”
refers to the Null hypothesis and not to a value of zero of the test sta-
tistic (i.e. the validation metric). A common (yet inappropriate; see
Section 3.8.2) Null-value for testing soil moisture accuracy

requirements, for instance, is 0.04 m3m−3 ubRMSD. Hence, if the p-
value for 0.04 m3m−3 of the sampling distribution around an estimated
ubRMSD is below the defined α level, the product is said to meet ac-
curacy requirements with statistical significance.

However, the American Statistical Association (ASA) has recently
issued a statement on statistical significance and p-values (Wasserstein
and Lazar, 2016) warning about the science-wide misuse and abuse of
NHST through the replacement of scientific reasoning with a dichot-
omous and arbitrary classification of results into “significant” or “non-
significant”. In this statement, the ASA is advocating the abandonment
of statistical significance testing altogether for two main reasons. The
first one is that an alarming fraction of articles in the scientific litera-
ture present unjustified inferences based on misinterpreted p-values and
confidence intervals (Greenland et al., 2016; Gelman and Stern, 2006;
Wasserstein and Lazar, 2016). The second and more important argu-
ment is that p-values alone provide no grounds for meaningful decision
making. While the magnitude of p itself can be informative about how
consistent the data at hand are with an assumed stochastic model, “[…]
a label of statistical significance does not mean or imply that an asso-
ciation or effect is highly probable, real, true, or important. Nor does a
label of statistical nonsignificance lead to the association or effect being
improbable, absent, false, or unimportant.” (Wasserstein et al., 2019).
Therefore, no practical conclusion or decision should be based on
whether p-values do or do not meet an arbitrarily defined threshold.
Instead of strictly yet arbitrarily categorizing study results based on
dichotomous significance tests, one should strive for more careful study
design and more rigorous understanding, interpretation and reporting
of the stochastic properties of the data at hand (Greenland et al., 2016;
Tong, 2019). Note that the same can be said for an arbitrarily defined
target accuracy threshold of 0.04 m3m−3, which is often used to declare
a product - without any solid grounds - as “valid” or “invalid” (see
Section 3.8.2 and Section 5).

In conclusion, for soil moisture validation purposes, we follow the
guidance of the ASA and recommend to avoid any statement or inter-
pretation about statistical “significance” or “non-significance”, and to
instead always provide and interpret a statistical summary of calculated
validation metrics in the form of confidence intervals alongside the
metrics themselves. How confidence intervals can be calculated and
recommendations of how they can be presented are provided in the
following sections.

3.6. Confidence intervals

In general, confidence intervals represent the pdf of the sampling
errors of an estimate and are defined at a certain confidence level. A
confidence level of, say, 95% means that if one would repeatedly cal-
culate 95% confidence intervals in a series of similar experiments, then
95% of them would - on average - contain the true value, provided that
all assumptions made for the stochastic model are met. Note that this is
not the probability that the true value that is approximated by the es-
timate lies within the confidence interval (Neyman, 1937; Greenland
et al., 2016). In theory, this probability - which would indeed be more
informative - could be represented by a Bayesian credible interval, but
calculating it would require a priori knowledge about the pdf of the
parameter that is being estimated (i.e. the so-called “prior”) and this is
typically not available.

Estimating confidence intervals for validation metrics is not always
straightforward because the sampling error pdfs of the various esti-
mators are often not well understood or contain parameters that are
typically unknown (Zwieback et al., 2012). The only validation metrics
(presented here) for which analytical solutions for confidence intervals
exist are the temporal mean bias (bxy), the unbiased RMSD (ubRMSDxy),
and the Pearson correlation coefficient (Rxy). For TCA-based metrics,
one has to rely on bootstrapping (Efron and Tibshirani, 1986) to ap-
proximate the sampling error pdf.
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3.6.1. Analytical calculation
The sampling errors in bxy and ubRMSDxy are equivalent to the

sampling errors of the population mean and the population standard
deviation of the difference series u= x− y, which are known to follow
a t-distribution and a χ-distribution, respectively (Gilleland, 2010; De
Lannoy and Reichle, 2016):

u µ
t~

u
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n

n 1
u

(12)

and

n s1
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u

u

n 1 (13)

where n is the sample size; u and su represent the sample mean and
standard deviation of the difference series (x-y); and μu and σu are their
corresponding true population parameters. The population moments of
u are estimated within the (1 − α) ⋅ 100% confidence intervals as a
function of the sample moments of u. Specifically, the confidence in-
tervals (CI) for bxy and ubRMSDxy can be inferred from Eqs. (12) and
(13) as:
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No such simple direct relationships between the sampled and true
values have yet been found for the other validation metrics presented
here. For the Pearson correlation coefficient, it can be indirectly ob-
tained through Fischer's z-transformation, which transforms Rxy into a
variable that approximately follows a normal distribution with mean zxy
and standard deviation (n − 3)−0.5 (Bonett and Wright, 2000):
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The confidence interval for Rxy can be obtained by back-trans-
forming z as:
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The confidence interval for the coefficient of determination (Rxy
2)

can be derived by simply squaring the confidence interval of Rxy in Eq.
(17).

One major issue for calculating confidence intervals from the ana-
lytical expressions described above is the inherent assumption of in-
dependence between samples. For soil moisture time series, this as-
sumption is often not met due to the auto-correlated nature of soil
moisture governing processes. Since such auto-correlation in the data
essentially causes a widening of the confidence intervals, one popular
way to account for it is to reduce the degrees of freedom (sample size)
of the used distribution. This is typically done by assuming a first-order
auto-regressive AR(1) behaviour in the time series and using the lag-1
auto-correlation (ρ) to calculate a correction factor for the sample size n
(Dawdy and Matalas, 1964; Draper et al., 2012):
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+

n n
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1
e

(18)

where ne is the effective sample size that is used to estimate auto-cor-
relation corrected confidence intervals according to Eqs. (14)–(17). A
combined effective value for ρ, which summarizes the possibly different
lag-1 auto-correlation of the two considered time series for which the
respective validation metric is calculated, can be obtained as their
geometric average:

=
x y (19)

with ρx and ρy obtained from a fitted AR(1) model as:

= e
i

dm

i (20)

where i ∈ [x, y], τi is the fitted persistence time of the individual time
series x and y, i.e. the time lag at which the auto-correlation drops
below 1/e, and dm is the median time distance between consecutive
valid, collocated observations, i.e. the lag-1 distance accounting for the
typically irregular spacing between satellite retrievals. Note that aver-
aging correlation coefficients is generally not recommended (see
Section 3.7), but required here to determine a single effective proxy of
the auto-correlation of collocated data pairs with possibly deviating
individual memory. Using the geometric average avoids the dominance
of data sets with large auto-correlation (e.g., land surface models often
have a different memory than satellite observations), which may cause
excessively large confidence intervals.

Note that the necessity of relying on a possibly crude approximation
of a lumped effective auto-correlation correction parameter for calcu-
lating confidence intervals is but one factor undermining their ability to
serve as decision basis for declaring results as significant or non-sig-
nificant (see the previous section). One should always bear in mind that
confidence intervals inevitably are - just as the estimates they are meant
to describe - uncertain.

3.6.2. Bootstrapping
No exact solvable analytical expressions or transformations for

confidence intervals around TCA-based metrics have yet been derived.
Zwieback et al. (2012) presented a formulation of confidence intervals
for TCA-based RMSE estimates in a synthetic study which, however,
required the knowledge of the true RMSE states and is therefore of
limited practical use. Alternatively, several studies (e.g., Caires and
Sterl, 2003; Zwieback et al., 2012; Draper et al., 2013) have suggested
the use of bootstrapping as a potential non-parametric method for ob-
taining confidence intervals of estimators with unknown sampling
distribution (Efron and Tibshirani, 1986).

Bootstrapping is a special case of Monte Carlo simulation, which
uses the sample itself as approximation of the population. More speci-
fically, it constructs an empirical probability distribution of the test
statistic (in our case the validation metric) by resampling the original
sample multiple times, with replacement to preserve the sample size,
and repeated calculation of the test statistic from those resamples. This
bootstrapped distribution then allows for the direct derivation of con-
fidence intervals as well as other parameters of the sampling error pdf.
The advantages of this method lie in its algorithmic simplicity and that
it can be applied to any metric without the need to assume a particular
sampling distribution (such as t or χ). However, bootstrapping con-
fidence intervals requires a considerable number of resamples, which
may lead to large computational costs, and relies on the assumption
that the sample is indeed a reliable representation of the population,
which requires a large sample size. A general recommendation for
bootstrapping confidence intervals is to use a minimum of 1000 re-
samples (Efron and Tibshirani, 1986). However, the number of required
resamples may be chosen more specifically for a given study by testing
for convergence of the results with increasing sample size. For example,
Draper et al. (2013) used 1000 resamples for estimating confidence
intervals for TCA-based ubRMSE estimates, although their testing found
that 500 would have been sufficient.

As was the case for the analytical expressions, bootstrapped con-
fidence intervals are also susceptible to auto-correlation in the data.
This can be accounted for by resampling blocks of data instead of single
data points, referred to as block-bootstrapping (Ólafsdóttir and
Mudelsee, 2014), which preserves the auto-correlation properties of the
original sample. An estimate of the optimal block length (lopt) for
bootstrapping CIs around TCA-based estimates can be obtained
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following Chen et al. (2018) as:
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(21)

where NINT{ ⋅ } denotes rounding to the nearest integer. As before, a
single effective value for ρ can be obtained as the geometric average of
the lag-1 auto-correlations of the three data sets used to obtain the
respective TCA estimate ( =

x y z
3 ). The lag-1 is the median time

interval between consecutive valid, collocated data triplets. To prevent
data gaps from causing an auto-correlation degradation during the re-
sampling, we recommend to discard data blocks from the resamples if
they contain less than 50% of valid data.

3.7. Summary statistics

Validation metrics and their confidence intervals should be calcu-
lated and assessed over a wide range of spatial locations to understand
error characteristics of a soil moisture product under different climatic,
topographic and land cover conditions. However, it may be practical to
summarize spatially distributed skill estimates into a single combined
metric (for example to obtain an overall ranking of different products or
to track the performance evolution of a product over time), which re-
quires also the aggregation of their associated confidence intervals.

3.7.1. Averaging metrics
The most common way of obtaining a combined skill estimate is

arithmetic averaging:

= w v (22)

where is the average of k spatially distributed skill metrics that are
summarized in the skill vector v = [ν1⋯νk]

⊺; and w = [w1⋯wk]
⊺

contains the weights that are attributed to the individual skill estimates
with ∑wi=1. Averaging skill metrics in a weighted fashion to minimize
the impact of sampling errors is in principle possible by deriving
weights from the sampling error magnitudes (Aitkin, 1936), but in most
cases, an unweighted average is preferred because validation points are
typically selected to represent a wide range of varying conditions, and
areas with lower sampling errors (i.e. regions with better temporal
coverage, for instance because less data are masked out) could dom-
inate a weighted averaged skill estimate. For such unweighted average,
the weight vector takes the form w = [k−1⋯k−1]⊺.

While many metrics can be averaged safely, it is - against common
practice - not recommended to average correlation coefficients (neither
Pearson nor TCA-based) because they are calculated as ratios using
standard deviations (variances) and covariances or SNRs (see Eqs. (9)
and (10)). Therefore, they behave highly non-linearly and neither an
average of these ratios nor a ratio of averaged numerators/denomi-
nators would allow for a meaningful inference about statistical prop-
erties. For example, averaging correlation coefficients of 0.1 and 0.9,
which correspond to a SNR of 0.01 and 4.26, respectively (in the case of
Pearson correlation assuming a random error-free reference data set),
would lead to an average correlation of 0.5 with an associated SNR of
0.33. This is far from their average SNR of 2.14 (ignoring for the mo-
ment that this too is an average of ratios) which would correspond to a
correlation coefficient of 0.83. In contrast, correlation coefficients of
0.3 and 0.7, representing SNRs of 0.1 and 0.96, respectively, would
have the same average correlation yet the average of their associated
SNR is 0.53, corresponding to a correlation of 0.59. Moreover, the
skewed probability distribution of the Pearson correlation coefficient
causes the arithmetic average to be systematically biased. Some studies
suggest to average Fisher-transformed z-values instead (Corey et al.,
1998), which have a Gaussian sampling distribution, but a back-
transformed z-average is just as difficult to interpret. Following the
above example, averaging correlation coefficients of 0.1 and 0.9 in z-
space would lead to an average correlation (or more precisely, an

inverse average-z) of 0.66 (SNR = 0.76), whereas when averaging z-
transformed correlations of 0.3 and 0.7, it would be 0.53 (SNR = 0.39).

In other words, the choice of whether to average correlation coef-
ficients, Fisher-transformed z-values, or SNRs - albeit representing the
exact same uncertainty properties - will lead to different values and
hence interpretations of the resulting average and this difference also
depends on the degree of variability across the estimates that are being
averaged. Moreover, the resulting average number (regardless of the
approach) no longer represents an actually meaningful statistical
property. Alternatively, instead of averaging pre-calculated correlation
coefficients, one may be tempted to calculate the correlation coefficient
directly over the concatenated measurements or estimates of all avail-
able locations to obtain an overall skill estimate. However, this is not
meaningful as the effects of different populations are lumped together.
As a consequence, for example, two data sets that individually exhibit
strong positive correlation in a wet and in a dry soil moisture regime,
respectively, may appear to have an overall weak anti-correlation when
put together, an effect also known as Simpson's paradox (Blyth, 1972).
Therefore, such an approach should be strictly avoided.

3.7.2. Averaging confidence intervals
The uncertainty in the spatially averaged skill metric in Eq. (22)

associated with the sampling errors of the individual skill estimates can
be calculated through the standard method for the propagation of un-
certainty as:

=s w w
2

(23)

where s 2 is the sampling uncertainty in the averaged skill (i.e. its
sampling error variance); and ∑ is the sampling error covariance matrix
for the k individual skill estimates. The corresponding aggregated
confidence intervals can be derived from a Gaussian distribution (which
will generally be assured by the Central Limit Theorem for reasonably
large samples) with mean and standard deviation s .

Diagonal elements in ∑ are the sampling error variances of the in-
dividual skill estimates, i.e. diag(∑) = s2 with s2= [sν1

2
⋯sνk

2]⊺. For bxy
and ubRMSExy estimates, they are the squared standard errors of the
sample mean and sample variance (of the difference series u= x− y at
each individual location), respectively:
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For TCA-based metrics, the sampling error variance can be directly
calculated from the bootstrapped sampling distribution.

= R ss (25)

where ∘ denotes the Hadamard product, i.e. element-wise matrix mul-
tiplication. R differs for the various skill metrics. For bxy and ubRMSDxy,
it is the spatial auto-correlation matrix of the difference series u, and of
the squared, bias-corrected difference series u u( )2, respectively, at
the different locations u where skill metrics are calculated. For TCA-
based metrics, the sampling error covariance can be calculated as the
covariance between the bootstrapped samples (Gruber et al., 2019b),
provided that the order in which bootstrap-resamples are drawn is the
same at all different locations, which may be difficult when using block-
bootstraps with different block-length.

Earlier research (De Lannoy and Reichle, 2016) has proposed a
clustering approach to take possible sampling error correlations into
account. This approach first calculates mean metrics and confidence
intervals per spatial cluster, assuming that the sampling errors of the
spatially close data sets within each cluster are perfectly correlated.
Next, averaged skill metrics and confidence intervals from within the
clusters are averaged, assuming that all clusters are completely
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independent. However, this approach is expected to overestimate con-
fidence intervals because: (i) sampling errors will never be perfectly
correlated unless validation metrics are calculated multiple times from
the exact same data, and (ii) clusters are formed based on the expected
auto-correlation length of the soil moisture data sets, which will be
much larger than that of the difference series between data sets, as
required in Eq. (25).

Finally, although averaging of some metrics and confidence inter-
vals is possible, we generally recommend to retain detailed information
about their spatial variability, and to leverage this information to ob-
tain a better understanding of product performance and its relation to
land cover, topography, climate, and other possibly important factors.
If point-wise assessments are not feasible or if simple product summa-
ries are desired, percentile statistics such as medians and inter-quartile-
ranges (of both calculated skill estimates and their confidence intervals)
are generally more informative than spatial averages and their in-
creasingly inaccurate averaged confidence intervals. More specific re-
commendations of how validation metrics and confidence intervals can
be presented are provided in Section 4 and Appendix A.

3.8. Practical remarks

3.8.1. Validating downscaled products
Currently, most space-borne microwave sensors available for soil

moisture retrieval operate at spatial resolutions of about 252–502 km2

(Gruber et al., 2019a). Some higher-resolution Synthetic Aperture
Radar (SAR) sensors exist that allow for reasonable soil moisture re-
trieval at scales up to approximately 1 km2 (Pathe et al., 2009; Gruber
et al., 2013b), yet with considerably lower temporal resolution and
accuracy. In addition, many downscaling approaches have been de-
veloped to improve the spatial resolution of coarse-resolution soil
moisture products, e.g., by fusing coarse-resolution radiometer or
scatterometer measurements with high-resolution SAR data (Das et al.,
2017; Bauer-Marschallinger et al., 2018), by fusing microwave ob-
servations with optical/thermal measurements (Chauhan et al., 2003),
or through data assimilation (Reichle et al., 2017b). For a compre-
hensive review of downscaling methods see Peng et al. (2017).

The validation of downscaled products is mostly done as for coarse-
resolution products, i.e. through time series analysis with a focus on
temporal dynamics at individual locations (see Section 3). In doing so,
it has been shown that the downscaling process often actually decreases
the temporal performance of the products, that is, the original coarse-
resolution products often correlate better with local soil moisture dy-
namics, even at a point scale, than their downscaled counterparts (Peng
et al., 2015). While downscaled soil moisture images provide more
visual level-of-detail, only few studies have quantitatively assessed
whether the obtained spatial patterns actually represent real soil
moisture variations (e.g., Bauer-Marschallinger et al., 2018; Sabaghy
et al., 2020) or whether they are just mimicking spatial patterns of
ancillary data such as soil texture maps (for a comprehensive review of
validation studies for downscaled products see Peng et al., 2017).

Therefore, we highly recommend that future validation studies for
downscaled products put a strong emphasis on assessing also the spatial
soil moisture variations obtained from the downscaling, e.g., by esti-
mating spatial correlation coefficients (Sahoo et al., 2013; Kolassa et al.,
2017; Sabaghy et al., 2020), in addition to time series analyses. To that
end, we further encourage the setup of field campaigns and validation
sites dedicated to support such high-resolution validation activities,
especially in regions where soil moisture variations are very hetero-
geneous.

3.8.2. Target accuracy requirements
Satellite soil moisture validation studies most commonly evaluate

products against a target accuracy threshold of 0.04 m3m−3 ubRMSD
across the globe, excluding regions of snow and ice, frozen ground,
complex topography, open water, urban areas, and vegetation with

water content greater than 5 kg/m2. This requirement was defined by
the Soil Moisture and Ocean Salinity (SMOS; Kerr et al., 2001) and the
Soil Moisture Active Passive (SMAP; Entekhabi et al., 2010a) missions,
and by the Terrestrial Observation Panel for Climate (TOPC; WMO,
2016). Alternatively, the Satellite Application Facility in Support to
Operational Hydrology and Water Management (H SAF) of the Eur-
opean Organisation for the Exploitation of Meteorological Satellites
(EUMETSAT) has defined (TCA-based) SNR product requirements (H-
SAF, 2017) for the operational soil moisture products that are retrieved
from measurements of the Advanced Scatterometer (ASCAT) onboard
the MetOp satellites (Naeimi et al., 2009). In particular, the EUMETSAT
H SAF defines 0, 3 and 6 dB SNR as threshold, target and optimal SNR
requirements to make product assessment possible on a larger scale and
spatially better comparable (see Section 3.4).

Both of these requirements are based on relatively practical, easy-to-
estimate single numbers that represent a rough estimate of what is
currently achievable rather than being an indication of “good” or “bad”
product quality. While they provide easy means to monitor product
performance evolution over time and to compare products, they are
entirely unrelated to the suitability of a product for specific applica-
tions. However, the actual specification of bias and uncertainty re-
quirements for the fitness-for-purpose for a particular application (in-
cluding the specification of the appropriate metrics) is a task of the
respective user community and urgently requires further research
(Entekhabi et al., 2010b), because no data set can be declared “valid” if
no validity requirements are available.

3.8.3. Reproducibility
The research community generally suffers from a lack of reprodu-

cibility in scientific studies (Baker, 2016). Also in soil moisture vali-
dation studies, contradictory results for the performance and relative
ranking between different satellite products have been reported (e.g.,
Wagner et al., 2014). These ambiguities originate from: (i) the choice of
reference data and product versions; (ii) the use of different spatial
regions and time periods; (iii) different approaches used for data pre-
paration and pre-processing; (iv) statistical sampling errors; and (v)
software implementation errors. Note, however, that contradicting re-
sults are not necessarily caused by bad study design but often originate
from stochastic uncertainties, which are inevitably dominant in space
borne Earth observation measurements and retrieval algorithms
(Greenland et al., 2016).

Embracing statistical uncertainty and developing an in-depth un-
derstanding of soil moisture product quality requires more compre-
hensive descriptions of data sets, software, and methodology than are
usually provided as well as the mandatory, additional estimation and
presentation of sampling errors. To that end, we recommend that:

• all validation results should be accompanied by confidence intervals
as measure for sampling errors;

• all methodological steps should be described with sufficient detail to
be reproducible;

• all data sets used for the study should be made publicly available
and unambiguously identifiable by providing their exact product
version information and, where available, their Digital Object
Identifier (DOI);

• all used software packages that are relevant for the exact re-
production of validation results should be referenced with their
complete version number and, where available, their DOI. If not
accessible via open repositories (in particular software specifically
designed for that study), we recommend to make source code pub-
licly available, for example on GitHub (https://github.com/; last
access: 1 July 2019).

A list of some current publicly available software that is specifically
aimed at, or closely related to soil moisture validation is provided in
Table 3. An online validation tool that is built around these software
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packages and follows the good practice guidelines presented in this
paper is provided by the Quality Assurance Framework for Soil
Moisture (QA4SM; https://qa4sm.eodc.eu/;last access: 1 July 2019).

Note that the re-distribution of in situ measurements (see the third
point above) may be particularly problematic as many networks do not
operate for free. Requiring networks to freely distribute their data will
likely decrease the number of datasets available for validation activ-
ities, which may ultimately hamper the evolution of satellite soil
moisture products and downstream products derived thereof. We
therefore emphasize the tremendous value of ground reference mea-
surements and encourage the community to support, by any means
possible, the development and continuation of operational Cal/Val
sites.

4. Validation good practice protocol

This section provides a compilation of the theoretical considerations
presented above in the form of a validation good practice protocol for
satellite soil moisture products, i.e. guidelines for:

• the selection of reference data;
• data pre-processing steps;
• the selection and implementation of appropriate metrics; and
• the presentation of validation results.
Fig. 3 illustrates the process and Appendix A provides an example

that follows these recommendations. We stress that there is no one-size-
fits-all approach for validating Earth observation data. Depending on
the application in question, several analyses may not be necessary. Also,
recommended thresholds may need to be adjusted depending on data
quality requirements (e.g., more strict data masking procedures may be
employed) or data availability (e.g., the allowed in situ measurement
depth may be increased if only retrievals from long wavelengths in dry
and sandy regions are used).

4.1. Data selection

As discussed in Section 2, no reference data source provides a suf-
ficiently accurate and traceable soil moisture proxy for reliable error
assessment on a global scale. A complete and comprehensive product
validation therefore requires comparisons against each of the following
(Jackson et al., 2012): (i) dense networks, in particular core validation
sites; (ii) sparse networks; (iii) land surface model output; and (iv) other
satellite products, always making sure that the latest or most re-
commended product versions are used. However, given the large
number of satellite and reference products available, a complete ana-
lysis that considers all these data sources is typically beyond the ca-
pacity of a single validation study. Therefore, separate studies may be
conducted for dense network evaluation (Colliander et al., 2017a),
sparse network evaluation (Dorigo et al., 2015; Chen et al., 2017), or
coarse-resolution product inter-comparison (Al-Yaari et al., 2014;
Burgin et al., 2017; Chen et al., 2018) and their results compiled to-
gether.

Since satellite soil moisture retrievals represent only the top few
centimeters of the soil, in situ sensors and modelled soil layers used for
validation should reach no deeper than 5–10 cm, which is considered as
the maximum sensing depth for currently available microwave

wavelengths (X-band to L-band). Information where currently publicly
available reference data sets can be accessed is provided in Table 2.

4.2. Pre-processing

4.2.1. Masking
In situ measurements and satellite retrievals should be masked out

when considered unreliable. Recommendations from data providers
regarding product inherent quality flags should be followed and the
employed thresholds carefully documented. Additionally, we re-
commend using ancillary data to mask out pixels classified as tropical
forests, water bodies, wetlands, and inundation areas as well as all
measurements on days with non-zero snow indicators (e.g., snow height
or snow-water-equivalent), or surface or soil temperature below 4 ∘C.
Such ancillary data can be supplied by land surface models or com-
plementary satellite data. When biases or uncertainties of multiple
products are compared, they should be calculated from the exact same,
collocated data points. However, care should be taken that single pro-
ducts with poor data coverage do not distort the overall assessment (see
Section 5).

To avoid excessively large confidence intervals that can hamper
meaningful data comparison, grid cells with less than 50–500 collo-
cated data points may be masked out depending on data availability
(Zwieback et al., 2012). Also, many studies mask out correlation coef-
ficients based on Student's t-test (i.e. applying p-value thresholds for
correlation coefficients), and/or bias and uncertainty estimates based
on vegetation density (e.g., vegetation water content> 5 kg/m2) or
other thresholds (e.g., open-water fraction>0.05) (Dorigo et al., 2010;
Brocca et al., 2011; Al-Yaari et al., 2014). However, carefully reporting
and interpreting confidence intervals and sample sizes at locations with
low data coverage could indeed provide valuable additional insight and
may be more informative than masking out estimates completely
(Wasserstein et al., 2019). Also, complete reporting of results prevents
generating publication biases due to “cherry-picking” which is some-
times found in the scientific literature (Greenland et al., 2016).

4.2.2. Collocation
Spatial collocation requires the selection of a spatial comparison

grid, which is often the grid of the satellite product under validation. In
situ measurements should be assigned to the grid cell in which they are
located. For dense networks, all stations that lie within a particular grid
cell should be averaged, if possible taking their respective spatial re-
presentativeness for that grid cell into account. To avoid artificial jumps
due to sensor drop-outs, only time steps where all stations provide valid
measurements should be considered. For the SMAP core validation sites
(see Section 2.2.1), a validation grid that minimizes upscaling errors
has been developed as described in Colliander et al. (2017a).

Gridded reference products (i.e. other satellite and land surface
model products) should be resampled onto the chosen comparison grid,
e.g., using a Nearest Neighbor (NN) search. If the grid resolution of the
reference product is coarser than that of the comparison grid, individual
grid cells of that product may be assigned to multiple comparison grid
cells. If the grid resolution is much finer, all NNs of single comparison
grid cells (in case more than one exist) should be averaged, if possible
taking spatial representativeness into account.

Temporal collocation at comparison time steps should minimize the
time difference between data match-ups and be based on a NN-search

Table 3
Open-source software that can be used for satellite soil moisture validation (links last accessed: last access: 1 July 2019).

Name Description Language Reference

Source code used to produce validation examples in this publication in Appendix A python, MATLAB https://github.com/alexgruber/validation_good_practice/
pytesmo Geospatial time series validation toolbox python https://doi.org/10.5281/zenodo.1215760/
poets Geospatial image resampling toolbox python https://pypi.org/project/poets/
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with a maximum time difference threshold of 1–12 h, depending on
data availability. Note that the choice of the comparison grid and time
steps may affect the presence and distribution of (spatial and temporal)
representativeness errors among the considered data sets (see Section
5).

4.2.3. Decomposition
All validation metrics should be calculated for the raw soil moisture

time series (of collocated retrievals and reference data) as well as for
short-term and long-term anomalies, except for temporal mean biases
whose calculation is trivial for anomalies. Short-term anomalies should
be estimated as residuals from a seasonality that is computed by ap-
plying a 4–8 week moving average window to the time series. Long-
term anomalies should be estimated as residuals from a climatology
that is computed by averaging the measurements or estimates of all
years within a 4–8 week moving window around each DOY, but only if
at least 5–10 years of data are available. To avoid data-density related
artefacts, especially in the transition periods from frozen to non-frozen

periods, moving averages should only be calculated if at least 25–50%
of the maximal data pair coverage is available within a particular time
window.

4.2.4. Rescaling
When using fiducial reference data, units (e.g., m3m−3 and degree of

saturation) should be unified for the purpose of bias estimation using
soil texture information, keeping in mind that inaccuracy in soil in-
formation directly propagates into the bias estimates. To account for
(horizontal and vertical) systematic representativeness errors and dif-
ferent soil moisture units, the data set under validation should be re-
scaled (before decomposition for evaluating raw time series and after
decomposition for evaluating anomalies) towards the reference data
when estimating absolute uncertainties (i.e. ubRMSDs or ubRMSEs).
When calculating relative metrics, data sets should be rescaled by
matching their temporal mean and standard deviation. When calcu-
lating TCA-based metrics, data sets should be rescaled using also TCA-
based rescaling coefficients. Note that no rescaling or unit conversion is

Fig. 3. Validation good practice protocol illustration.
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necessary for Pearson correlation coefficients or TCA-based correlation
and SNR estimates, since these metrics are not affected by linear data
transformation.

4.3. Metric calculation

Remember that all covariance-based metrics require zero error
correlation. Any combination of in situ measurements, land surface
model estimates, active-microwave-based retrievals, or passive-micro-
wave-based retrievals is expected to mostly fulfil this requirement (see
Section 3.4.2; Gruber et al., 2016a). Different products from within any
of these categories (except for in situ data), on the other hand, are
expected to have correlated errors (Gruber et al., 2016b). Therefore, the
metrics described below should not be applied to such product com-
binations. Moreover, since non-zero error correlations may exist even
when using products from different categories (see Section 3.4.2;
Yilmaz and Crow, 2014; Pan et al., 2015), it is strongly recommended to
verify if assumptions are met (see Section 4.3.2).

4.3.1. Relative metrics
Temporal mean biases (Eq. (4)) should be calculated between all

data sets that are expected to be properly collocated and have com-
parable spatial resolution, and are hence not dominated by spatial re-
presentativeness errors. These data sets may include dense networks,
land surface models, and other satellite data sets. It should be kept in
mind, however, that the underlying measurement resolution often
considerably differs from the sampling grid resolution, which poten-
tially causes representativeness errors that are not directly apparent as
such. Correlation coefficients and unbiased Root-Mean-Square-Differ-
ences (Eqs. (9) and (7), respectively) should be calculated between all
data sets whose errors are not expected to be correlated (see above).

4.3.2. TCA-based metrics
Second-order biases (Eq. (5)) of the validation data set should be

calculated using fiducial reference data (i.e. at the core validation sites).
Unbiased Root-Mean-Square-Errors and SNRs (Eqs. (8) and (11), re-
spectively) should be calculated for all data sets. If more than one tri-
plet with independent errors is available to estimate the bias or un-
certainty of a particular product, TCA should be applied to all possible
triplets and redundant estimates should be averaged (Gruber et al.,
2016b). The spread between redundant estimates should be used as a
diagnostic to verify if orthogonality and zero error correlation as-
sumptions are met (Dorigo et al., 2010; Draper et al., 2013; Chen et al.,
2017).

4.3.3. Confidence intervals
For each metric, 80–95% confidence intervals should be calculated

using their analytical estimators (Eqs. (14)–(17)) or, if not available,
block-bootstrapping. The latter should be based on at least 1000
bootstrap samples (Efron and Tibshirani, 1986) or possibly less if tested
for convergence, and all confidence intervals should be corrected for
sample auto-correlation.

4.4. Presentation

Validation metrics together with sample sizes and confidence in-
tervals (and/or their upper and lower confidence limits) should be
presented for each location where they are calculated, either by means
of spatial maps or, if not meaningful (for example for core validation
sites), in tabular form. Additionally, summary statistics (representing
average conditions and spatial variability) of both validation metrics
and their confidence intervals (and/or limits) should be provided, e.g.,

in the form of boxplots (i.e. median, inter-quartile-range and 5th/95th
percentiles). The presentation can be further customized, for example
by stratifying the summary statistics for climatological or land surface
conditions.

Ratio-based metrics (i.e. Pearson and TCA-based correlation coef-
ficients as well as SNRs) must not be averaged. Differences between
these metrics must always be related to their absolute values and be
interpreted with care (see Section 3.7). SNR-related properties of dif-
ferent products may be compared in terms of SNR ratios or SNR dif-
ferences in decibel space (Eq. (11)).

Examples of how validation metrics and associated confidence in-
tervals can be presented are provided in Appendix A.

5. Final remarks: towards best practices

In this paper we have reviewed state-of-the-art validation methods,
including reference data sources and data pre-processing procedures,
and provided good practice guidelines for the validation of satellite soil
moisture products. Moreover, we have identified several weak links
that require careful attention to increase the reliability of soil moisture
data quality assessments. Specifically, the following research gaps
should be addressed in the near future:

• On assumptions: the majority of studies assume that estimated
biases and uncertainties are stationary (i.e. constant over time) or at
least that they represent the average data quality of a product.
However, given the strong link between soil moisture data quality
and vegetation (van der Schalie et al., 2018; Zwieback et al., 2018;
Gruber et al., 2019a), retrieval accuracy can be expected to vary
strongly between seasons and many applications could greatly
benefit from temporally varying quality information. Given the ra-
pidly growing temporal coverage of soil moisture products, efforts
should be made to provide bias and uncertainty estimates at dif-
ferent time scales, which also requires the use of seasonally varying
bias correction (i.e. rescaling) parameters.

• On pre-processing: very little is known about how spatial and tem-
poral collocation mismatches contribute to bias and uncertainty
estimates. Using simple NN or IDW approaches to find match-ups
between measurements and/or estimates that sample (represent)
very different soil volumes or were taken at different times will give
rise to representativeness errors that may considerably affect the
overall picture of the quality of a product. More research is needed
to quantify these representativeness errors and to develop resam-
pling methods that more rigorously take actual measurement or
model resolution into account.

• On metric calculation: most current studies neglect the impact of
second-order biases on various validation metrics such as the tem-
poral mean difference or the ubRMSD. Several attempts are made to
mitigate their impact using rescaling methods that match the sta-
tistical moments of the data sets, yet most of these methods do not
account for random errors and therefore match the moments in an
insufficient manner. More research is needed to quantify the impact
of suboptimal rescaling on second-order biases, on the impact of
uncorrected second-order biases on validation metrics, and on how
such uncorrected biases can be accounted for.

• On reference data: validation targets are typically defined against an
unknown truth. Comparing metrics against error-prone estimates of
this truth (i.e. reference data) will be inflated by some unknown
amount. Efforts should be made to obtain proper bias and un-
certainty estimates for reference data sets, which should be further
used to correct over- or underestimated validation metrics (Miralles
et al., 2010; Chen et al., 2017).
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• On statistical uncertainty: most validation studies do not report
confidence intervals, even though they are critical for a reliable
interpretation of validation results. Although an accurate analytical
calculation of confidence intervals for large-scale validation is not
trivial for all metrics, bootstrapping provides an easy and robust
alternative. However, care must be taken to properly account for
spatial and temporal auto-correlation in the data.

• On data merging: in recent years, several data merging algorithms
have been developed that aim at providing consistent long-term soil
moisture data records, whose temporal coverage extends beyond the
lifetime of single satellite missions (van der Schalie et al., 2018;
Gruber et al., 2019a). Such merging procedures give rise to unique
error characteristics such as highly non-stationary errors due to the
intermittent and weighted use of retrievals from different sensors
(Gruber et al., 2017) or inhomogeneities between sensor transition
periods (Su et al., 2016). More research is needed to understand the
impact of different transformation steps in data merging algorithms
(e.g., data harmonization using cdf-matching) on final product
quality, and good-practice validation guidelines need to be devel-
oped to comprehensively characterize such products.

• On continuity: given the perpetual changes in the land surface
character and climate as well as progressively increasing data record
lengths, sensor drifts, changing reference data availability, and im-
proving soil moisture retrieval algorithms, validation should be a
continuous process and validation reports frequently (at least an-
nually) updated throughout and beyond the lifetime of the various
satellite missions.

• On accuracy requirements: the well-known soil moisture mission
target accuracy requirement of 0.04 m3m−3 (as specified by the
Global Climate Observing System as well as for individual products
and missions), against which soil moisture products are typically
evaluated, does not relate to the fitness-for-purpose for a specific
application and no product can be declared “valid” if no meaningful
validity requirements are available. We therefore strongly

encourage a closer collaboration between satellite data providers
and the soil moisture user community to determine application
specific accuracy requirements that provide deeper insight into what
constitutes “good” or “bad” soil moisture data quality, thereby fos-
tering the development of improved satellite products. To that end,
we stress that only definitions of relative accuracy targets are
meaningful as no reference for absolute soil moisture levels at a
satellite scale is available (nor is it likely to be in the near future).

Finally, many of the discussed principles and methods are not ex-
clusively restricted to soil moisture. By setting this example, we hope to
also nurture the development and evolution of validation good practice
guidelines in other Earth observation communities.
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Appendix A. Validation example

Section 4 compiles the validation good practice guidelines provided in this paper into a recommended validation protocol. In this appendix, we
provide an example that follows this protocol, not to actually assess the quality of certain products, but to provide an illustration that can be easily
extrapolated to more specific validation tasks that readers may face. This includes a comprehensive description of the validation setup, demon-
strative examples of how validation results may be presented, and a discussion on where the currently available satellite soil moisture validation
literature often fails to comply with the good practice recommendations presented here. Results shown in this appendix have been generated using
the python programming language. All source code is available at https://github.com/alexgruber/validation_good_practice/ (last access: 1 July
2019). Metric calculation routines have been additionally translated into MATLAB.

A.1. Data sets and study area

Select validation examples are shown for soil moisture retrievals from the Advanced SCATterometer (ASCAT; Naeimi et al., 2009), the Soil
Moisture and Ocean Salinity (SMOS) mission (Kerr et al., 2010), and the Soil Moisture Active Passive (SMAP) mission (Entekhabi et al., 2010a).
Reference data used are coarse-resolution model estimates from the Modern-Era Retrospective analysis for Research and Applications, Version 2
(MERRA-2; Gelaro et al., 2017). This analysis is performed over the Contiguous United States (CONUS) using data from the beginning of 2015
through the end of 2018.

ASCAT data used are the EUMETSAT H SAF H113 data record and its extension H114, which are Level 2 (L2) soil moisture products that have
been retrieved from inter-calibrated backscatter measurements from identical ASCAT instruments onboard the MetOp-A and MetOp-B satellites using
the TU Wien WAter Retrieval Package (WARP) algorithm (Wagner et al., 1999; Naeimi et al., 2009). ASCAT is an active C-band radar with a spatial
resolution of 25 km. Soil moisture is retrieved as the degree of saturation and sampled onto a 12.5 km discrete global grid. Data can be obtained upon
registration from http://hsaf.meteoam.it/soil-moisture.php (last access: 1 July 2019).

SMOS data are the reprocessed L2 soil moisture retrievals version V650, which can be obtained upon registration from https://smos-diss.eo.esa.
int/ (last access: 1 July 2019; Kerr et al., 2012). SMOS is a passive L-band interferometric radiometer with an average spatial resolution of 43 km.
Soil moisture is retrieved in volumetric units and sampled on a 15 km discrete global grid.

SMAP data used are the 36 km L2 radiometer-only soil moisture retrievals (SPL2SMP), algorithm version 5 (R16010; DOI: https://doi.org/10.
5067/SODMLCE6LGLL; O'Neill et al., 2018). The passive SMAP radiometer operates at L-band at a spatial resolution of 40 km. Soil moisture is
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retrieved in volumetric units and sampled on the 36 km EASE grid version 2 (Brodzik et al., 2012).
MERRA-2 (Gelaro et al., 2017) is the latest atmospheric reanalysis produced by NASA's Global Modelling and Assimilation Office. Soil moisture is

estimated on a 0.5∘ × 0.625∘ grid in volumetric units as internal state variable of its land surface component, the Catchment Land Surface Model
(Koster et al., 2000). Here we use soil moisture estimates of the surface layer, which refers to the top 5 cm of the soil (GMAO, 2015). MERRA-2 data
can be downloaded from https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/ (last access: 1 July 2019).

A.2. Pre-processing

Unreliable soil moisture retrievals of the individual satellite products are masked out following the recommendations of the data providers.
ASCAT soil moisture retrievals are masked out if the correction flag has a value other than 0 or 4, if the confidence flag and the processing flag have
values other than 0, or if the surface state flag (Naeimi et al., 2012) has a value other than 1. SMOS retrievals are masked out if the RFI probability
exceeds 0.1 or if the Chi-2 probability drops below 0.05. SMAP data are masked out if the retrieval quality flag has a value other than 0 or 8. In
addition, soil moisture retrievals of all satellite products are masked out at time steps where MERRA-2 estimates a soil temperature below 4∘C or non-
zero snow mass.

ASCAT, SMOS and MERRA-2 are resampled to the 36 km EASE v2 grid that is used for SMAP retrievals using a nearest-neighbor approach. Note
that ASCAT data is, although sampled on a 12.5 km grid, not aggregated as the actual measurement resolution (25 km) is already close to the EASE
v2 grid resolution. Data sets are collocated in time by resampling them to fixed reference time steps with 24 h intervals using a nearest-neighbor
search. Reference time steps are selected for each grid cell separately such that they maximize the number of collocated time steps where all data sets
provide valid soil moisture estimates. Note that the choice of this reference time step can increase or decrease the sample size - depending on the
spatial location of the grid cell - by up to a factor of two.

After spatial and temporal collocation, short-term anomalies are calculated for each data set using a 35-day moving average window. Long-term
anomalies are not considered here because the study period of four years (2015-2018) is too short to calculate reliable long-term climatologies. The
term “raw time series” is used to refer to the non-decomposed data, i.e. before anomalies have been calculated. For the estimation of unbiased
RMSDs, data sets (both raw and anomaly time series) are rescaled by matching their temporal mean and standard deviation using MERRA-2 as
scaling reference for comparability.

A.3. Skill metrics and presentation

A.3.1. Sample size
All metrics are calculated from the same collocated data points, i.e. days where all four data sets provide valid soil moisture estimates. The

number of temporal matches at each grid cell within our study domain is shown in Fig. A.1. As discussed in Section 3, sample size directly translates
into statistical power, i.e. reliability (in terms of confidence intervals) of the calculated skill metrics. Sample sizes obtained here, which range from
150 in the more mountainous areas to up to about 300-500 in the rest of the CONUS, are typically considered high and associated with reasonably
low confidence intervals for validation purposes.

However, as discussed in Section 3.6, confidence intervals are affected by temporal auto-correlation. “Effective” sample sizes, corrected for auto-
correlation using Eq. (18), are additionally shown in Fig. A.1 considering all data sets (for TCA metrics), and in Fig. A.2 for raw soil moisture time
series and Fig. A.3 for soil moisture anomalies considering different data set pairs. Effective sample sizes are considerably smaller than actual sample
sizes, especially for raw time series due to the strong auto-correlation of the seasonal soil moisture cycle. Since auto-correlation levels vary between
data sets, effective sample sizes vary when calculated for different data set pairs (albeit only slightly), which in turn leads to differences in the
confidence intervals of relative skill metrics that are calculated between these data pairs.

In the following, all analytical confidence intervals (Eqs. (14), (15), and (17)) are calculated using these auto-correlation corrected effective
sample sizes. For bootstrapped confidence intervals, temporal auto-correlation is accounted for using block-bootstrapping (see Section 3.6.2) where
block-lengths are estimated from the same auto-correlation levels that are underlying the calculation of effective sample sizes (see Eq. (21)).

A.3.2. Relative metrics
Figs. A.4, A.5 and A.6 show spatial plots of relative (mean) bias, ubRMSD and R2 (coefficient of determination or squared Pearson correlation)

estimates for raw soil moisture values, respectively, and Figs. A.7 and A.8 show ubRMSD and R2 estimates for soil moisture anomalies, respectively.
Biases are only calculated for raw soil moisture time series and between soil moisture estimates that are expressed in the same unit, i.e. for SMOS,

SMAP, and MERRA-2 which provide estimates of volumetric soil moisture. ASCAT estimates of the degree of saturation could be converted into
volumetric units using porosity information, but since the quality of soil texture maps on these scales is questionable, this is not recommended for
bias estimation purposes. Note also, that the biases between the remaining three data sets also include collocation and (vertical and horizontal) scale
mismatches and should therefore be interpreted with care.

Along with the skill estimates, maps of confidence intervals are shown as the difference between the upper and lower confidence limits, chosen to
be the 90th and the 10th percentile of the sampling distribution, respectively. Important to note is that confidence intervals for R2 and ubRMSD
estimates depend on the magnitude of the respective skill estimate, and are for R2 not centered around the skill estimate. Misinterpretations may be
avoided by directly presenting the actual confidence limits (see Section 3.7).

We choose a confidence level of 80% because confidence intervals at the more common (yet completely arbitrary) 95% confidence level typically
become excessively large for the sample sizes available from collocated satellite products (Gruber et al., 2019b), especially when taking temporal
auto-correlation into account.

Fig. A.9 shows spatial summary statistics of the relative skill metrics as well as of their upper and lower confidence limits. Hardly any skill
differences would be considered significant when tested in the common way of checking for overlap between upper and lower confidence limits,
even though Figs. A.4–A.8 show clear differences in spatial patterns.
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A.3.3. Triple collocation metrics
As discussed in Section 3, TCA requires three data sets with independent random errors. Since errors of SMAP and SMOS are expected to be

correlated (see Section 4.3), two independent data set triplets can be formed, i.e. ASCAT - SMOS - MERRA-2 and ASCAT - SMAP - MERRA-2. This
results in unambiguous skill estimates for SMAP and SMOS, and in two skill estimates for ASCAT, which are averaged for increased precision.

Figs. A.10 and A.11 show spatial plots of TCA-based ubRMSE and R2 (coefficient of determination w.r.t. the unknown truth) estimates, re-
spectively, and Figs. A.12 and A.13 show ubRMSE and R2 estimates for short-term soil moisture anomalies, respectively. The skill estimates represent
the median of the bootstrapped sampling distribution, which are more robust than the direct estimates, and 80% confidence intervals (i.e. the range
between the 90th and the 10th percentile of the bootstrapped sampling distribution) are provided. Spatial summary statistics of the TCA estimates
(sampling distribution median) as well as of the upper and lower confidence limits are shown in Fig. A.14.

The two degrees of freedom in TCA-based ASCAT skill estimates can not only be used for increasing the precision of the estimates by averaging
them, but also to verify if TCA assumptions (i.e. zero error cross-correlation and error orthogonality) are met because if so, skill estimates should be
identical. To this end, Fig. A.15 shows the differences between R2 and ubRMSE estimates for ASCAT when calculated once using SMOS as third data
set and once using SMAP as third data set.

On average, differences are close to zero and especially R2 estimates do not exhibit spatial patterns of notable magnitude, which suggests that
differences are mainly caused by sampling errors and hence that the TCA assumptions are generally respected. Some positive skill biases for raw soil
moisture estimation for ASCAT are apparent in some northern and western parts of the CONUS, with skill estimates being slightly higher when using
SMOS rather than SMAP in the triplet. These areas strongly coincide with regions of generally poor ASCAT performance (see Fig. A.11), which is
more pronounced in the ubRMSD because SNR biases of a given magnitude are associated with larger biases in error variance at low SNR levels than
at high SNR levels. (see Section 3.7). Poor ASCAT performance in the northern CONUS is associated with issues in the vegetation correction of the
WARP retrieval algorithm (see Section A.1). These uncorrected vegetation signals are removed when using soil moisture anomalies, which results in
a considerable increase in skill metrics (see Fig. A.13) and also removes the non-zero difference in ASCAT skill estimates when using SMOS versus
SMAP for TCA, i.e. spurious error cross-correlations (see Fig. A.15).

A.4. Final remarks

In this appendix, we provide an illustrative validation example that follows the good practice guidelines presented in this paper. For brevity, we
omit the presentation of ground data comparisons, which can be calculated and presented in the exact same way as the area-wide coarse-scale
comparisons shown above. For simplicity, results are presented in spatial maps and boxplots that cover all of CONUS without further stratification.
For summary information or if metrics are only computed at a few locations using ground reference data, results could be further presented in tabular
format. Some examples of comprehensive ground reference data comparison including both sparse networks and core validation sites can be found in
Dorigo et al. (2015); Chen et al. (2017); Colliander et al. (2017a).

Fig. A.1. Sample size for temporal matches between ASCAT, SMOS, SMAP and MERRA-2 between 2015 and 2018 (left), effective sample size when correcting for
anomaly auto-correlation (middle), and effective sample size when correcting for auto-correlation in the raw time series (right).

Fig. A.2. Effective raw time series sample size, corrected for auto-correlation, for different data set combinations.
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Fig. A.3. Effective anomaly sample size, corrected for auto-correlation, for different data set combinations.

Fig. A.4. Temporal mean biases [m3m−3] (left) and associated 80% confidence intervals (right) between raw soil moisture estimates of SMOS, SMAP and MERRA-2.
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Fig. A.5. Unbiased (in mean and standard deviation) root-mean-square-differences [m3m−3] (left) and associated 80% confidence intervals (right) between raw soil
moisture estimates of ASCAT, SMOS, SMAP and MERRA-2.
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Fig. A.6. Coefficients of determination [−] (left) and associated 80% confidence intervals (right) between raw soil moisture estimates of ASCAT, SMOS, SMAP and
MERRA-2.
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Fig. A.7. Unbiased (in mean and standard deviation) [m3m−3] root-mean-square-differences (left) and associated 80% confidence intervals (right) between soil
moisture anomaly estimates of ASCAT, SMOS, SMAP and MERRA-2.
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Fig. A.8. Coefficients of determination [−] (left) and associated 80% confidence intervals (right) between soil moisture anomaly estimates of ASCAT, SMOS, SMAP
and MERRA-2.
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Fig. A.9. Spatial summary statistics of biases [m3m−3], ubRMSDs [m3m−3], and coefficients of determination [−] and their 10% and 90% confidence limits,
respectively, for raw soil moisture estimates and soil moisture anomalies of ASCAT, SMOS, SMAP and MERRA-2. Boxes represent the (spatial) median and inter-
quartile-range and whiskers represent the 5 and 95 percentiles.

Fig. A.10. Median of the bootstrapped TCA-based ubRMSEs [m3m−3] (left) and associated 80% confidence intervals (right) of raw soil moisture estimates of ASCAT,
SMOS, and SMAP.
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Fig. A.11. Median of the bootstrapped TCA-based R2 estimates [−] (left) and associated 80% confidence intervals (right) of raw soil moisture estimates of ASCAT,
SMOS, and SMAP.

Fig. A.12. Median of the bootstrapped TCA-based ubRMSEs [m3m−3] (left) and associated 80% confidence intervals (right) of soil moisture anomaly estimates of
ASCAT, SMOS, and SMAP.
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Fig. A.13. Median of the bootstrapped TCA-based R2 estimates [−] (left) and associated 80% confidence intervals (right) of soil moisture anomaly estimates of
ASCAT, SMOS, and SMAP.

Fig. A.14. Spatial summary statistics of the median of the bootstrapped TCA-based ubRMSEs [m3m−3], and R2 estimates [−] and their 10% and 90% confidence
limits, respectively, for raw soil moisture estimates and soil moisture anomalies of ASCAT, SMOS, and SMAP. Boxes represent the (spatial) median and inter-quartile-
range and whiskers represent the 5 and 95 percentiles.
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Fig. A.15. Difference in TCA-based ubRMSE [m3m−3] and R2 estimates [−] for raw soil moisture estimates (top) and soil moisture anomaly estimates (bottom) of
ASCAT when using SMOS as third data set minus when using SMAP as third data set in the triplet.
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