000875333 001__ 875333
000875333 005__ 20210130004918.0
000875333 0247_ $$2doi$$a10.1029/2019JD031529
000875333 0247_ $$2ISSN$$a0148-0227
000875333 0247_ $$2ISSN$$a2156-2202
000875333 0247_ $$2ISSN$$a2169-897X
000875333 0247_ $$2ISSN$$a2169-8996
000875333 0247_ $$2Handle$$a2128/25125
000875333 0247_ $$2WOS$$aWOS:000521086600022
000875333 037__ $$aFZJ-2020-01956
000875333 082__ $$a550
000875333 1001_ $$00000-0002-6283-2078$$aMwangi, Samuel$$b0
000875333 245__ $$aAssimilation of Cosmic‐Ray Neutron Counts for the Estimation of Soil Ice Content on the Eastern Tibetan Plateau
000875333 260__ $$aHoboken, NJ$$bWiley$$c2020
000875333 3367_ $$2DRIVER$$aarticle
000875333 3367_ $$2DataCite$$aOutput Types/Journal article
000875333 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1592829053_25393
000875333 3367_ $$2BibTeX$$aARTICLE
000875333 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000875333 3367_ $$00$$2EndNote$$aJournal Article
000875333 520__ $$aAccurate observations and simulations of soil moisture phasal forms are crucial in cold region hydrological studies. In the seasonally frozen ground of eastern Tibetan Plateau, water vapor, liquid, and ice coexist in the frost‐susceptible silty‐loam soil during winter. Quantification of soil ice content is thus vital in the investigation and understanding of the region's freezing‐thawing processes. This study focuses on the retrieval of soil ice content utilizing the in situ soil moisture (i.e., liquid phase) and cosmic ray neutron measurements (i.e., total water including liquid and ice), with Observing System Simulation Experiments. To derive the total soil water from neutron counts, different weighting methods (revised, conventional, and uniform) for calibrating the cosmic‐ray neutron probe (CRNP) were intercompared. The comparison showed that the conventional nonlinear method performed the best. Furthermore, to assimilate fast neutrons using the particle filter, the STEMMUS‐FT (Simultaneous Transfer of Energy, Mass and Momentum in Unsaturated Soil) model was used as the physically based process model, and the COSMIC model (Cosmic‐ray Soil Moisture Interaction Code) used as the observation operator (i.e., forward neutron simulator). Other than background inputs from disturbed initializations in the STEMMUS‐FT, model uncertainties were predefined to assimilate fast neutrons. We observed that with enough spread of uncertainties, the updated states could mimic the CRNP observation. In all setups, assimilating CRNP measurements could enhance total soil water analyses, which consequently led to the improved detection of soil ice content and therefore the freezing thawing‐process at the field scale.
000875333 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000875333 588__ $$aDataset connected to CrossRef
000875333 7001_ $$00000-0002-2166-5314$$aZeng, Yijian$$b1$$eCorresponding author
000875333 7001_ $$0P:(DE-Juel1)129506$$aMontzka, Carsten$$b2
000875333 7001_ $$00000-0001-9226-1774$$aYu, Lianyu$$b3
000875333 7001_ $$00000-0003-2096-1733$$aSu, Zhongbo$$b4
000875333 773__ $$0PERI:(DE-600)2016800-7$$a10.1029/2019JD031529$$gVol. 125, no. 3$$n3$$pe2019JD031529$$tJournal of geophysical research / D Atmospheres D$$v125$$x2169-8996$$y2020
000875333 8564_ $$uhttps://juser.fz-juelich.de/record/875333/files/2020_Mwangi_Cosmic_Ray_Ice.pdf$$yOpenAccess
000875333 8564_ $$uhttps://juser.fz-juelich.de/record/875333/files/2020_Mwangi_Cosmic_Ray_Ice.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000875333 909CO $$ooai:juser.fz-juelich.de:875333$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000875333 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129506$$aForschungszentrum Jülich$$b2$$kFZJ
000875333 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000875333 9141_ $$y2020
000875333 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000875333 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000875333 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ GEOPHYS RES-ATMOS : 2017
000875333 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000875333 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000875333 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000875333 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000875333 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000875333 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000875333 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000875333 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000875333 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000875333 920__ $$lyes
000875333 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000875333 980__ $$ajournal
000875333 980__ $$aVDB
000875333 980__ $$aUNRESTRICTED
000875333 980__ $$aI:(DE-Juel1)IBG-3-20101118
000875333 9801_ $$aFullTexts