001     875333
005     20210130004918.0
024 7 _ |a 10.1029/2019JD031529
|2 doi
024 7 _ |a 0148-0227
|2 ISSN
024 7 _ |a 2156-2202
|2 ISSN
024 7 _ |a 2169-897X
|2 ISSN
024 7 _ |a 2169-8996
|2 ISSN
024 7 _ |a 2128/25125
|2 Handle
024 7 _ |a WOS:000521086600022
|2 WOS
037 _ _ |a FZJ-2020-01956
082 _ _ |a 550
100 1 _ |a Mwangi, Samuel
|0 0000-0002-6283-2078
|b 0
245 _ _ |a Assimilation of Cosmic‐Ray Neutron Counts for the Estimation of Soil Ice Content on the Eastern Tibetan Plateau
260 _ _ |a Hoboken, NJ
|c 2020
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1592829053_25393
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Accurate observations and simulations of soil moisture phasal forms are crucial in cold region hydrological studies. In the seasonally frozen ground of eastern Tibetan Plateau, water vapor, liquid, and ice coexist in the frost‐susceptible silty‐loam soil during winter. Quantification of soil ice content is thus vital in the investigation and understanding of the region's freezing‐thawing processes. This study focuses on the retrieval of soil ice content utilizing the in situ soil moisture (i.e., liquid phase) and cosmic ray neutron measurements (i.e., total water including liquid and ice), with Observing System Simulation Experiments. To derive the total soil water from neutron counts, different weighting methods (revised, conventional, and uniform) for calibrating the cosmic‐ray neutron probe (CRNP) were intercompared. The comparison showed that the conventional nonlinear method performed the best. Furthermore, to assimilate fast neutrons using the particle filter, the STEMMUS‐FT (Simultaneous Transfer of Energy, Mass and Momentum in Unsaturated Soil) model was used as the physically based process model, and the COSMIC model (Cosmic‐ray Soil Moisture Interaction Code) used as the observation operator (i.e., forward neutron simulator). Other than background inputs from disturbed initializations in the STEMMUS‐FT, model uncertainties were predefined to assimilate fast neutrons. We observed that with enough spread of uncertainties, the updated states could mimic the CRNP observation. In all setups, assimilating CRNP measurements could enhance total soil water analyses, which consequently led to the improved detection of soil ice content and therefore the freezing thawing‐process at the field scale.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Zeng, Yijian
|0 0000-0002-2166-5314
|b 1
|e Corresponding author
700 1 _ |a Montzka, Carsten
|0 P:(DE-Juel1)129506
|b 2
700 1 _ |a Yu, Lianyu
|0 0000-0001-9226-1774
|b 3
700 1 _ |a Su, Zhongbo
|0 0000-0003-2096-1733
|b 4
773 _ _ |a 10.1029/2019JD031529
|g Vol. 125, no. 3
|0 PERI:(DE-600)2016800-7
|n 3
|p e2019JD031529
|t Journal of geophysical research / D Atmospheres D
|v 125
|y 2020
|x 2169-8996
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/875333/files/2020_Mwangi_Cosmic_Ray_Ice.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/875333/files/2020_Mwangi_Cosmic_Ray_Ice.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:875333
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129506
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J GEOPHYS RES-ATMOS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21