000875334 001__ 875334
000875334 005__ 20230522110530.0
000875334 0247_ $$2doi$$a10.1007/s00066-020-01626-8
000875334 0247_ $$2ISSN$$a0039-2073
000875334 0247_ $$2ISSN$$a0179-7158
000875334 0247_ $$2ISSN$$a1439-099X
000875334 0247_ $$2Handle$$a2128/25766
000875334 0247_ $$2pmid$$apmid:32394100
000875334 0247_ $$2WOS$$aWOS:000531760500002
000875334 037__ $$aFZJ-2020-01957
000875334 082__ $$a610
000875334 1001_ $$0P:(DE-Juel1)173675$$aKocher, Martin$$b0$$eCorresponding author
000875334 245__ $$aApplications of radiomics and machine learning for radiotherapy of malignant brain tumors
000875334 260__ $$aHeidelberg$$bSpringer Medizin$$c2020
000875334 3367_ $$2DRIVER$$aarticle
000875334 3367_ $$2DataCite$$aOutput Types/Journal article
000875334 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1601042167_15242
000875334 3367_ $$2BibTeX$$aARTICLE
000875334 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000875334 3367_ $$00$$2EndNote$$aJournal Article
000875334 520__ $$aBackgroundMagnetic resonance imaging (MRI) and amino acid positron-emission tomography (PET) of the brain contain a vast amount of structural and functional information that can be analyzed by machine learning algorithms and radiomics for the use of radiotherapy in patients with malignant brain tumors.MethodsThis study is based on comprehensive literature research on machine learning and radiomics analyses in neuroimaging and their potential application for radiotherapy in patients with malignant glioma or brain metastases.ResultsFeature-based radiomics and deep learning-based machine learning methods can be used to improve brain tumor diagnostics and automate various steps of radiotherapy planning. In glioma patients, important applications are the determination of WHO grade and molecular markers for integrated diagnosis in patients not eligible for biopsy or resection, automatic image segmentation for target volume planning, prediction of the location of tumor recurrence, and differentiation of pseudoprogression from actual tumor progression. In patients with brain metastases, radiomics is applied for additional detection of smaller brain metastases, accurate segmentation of multiple larger metastases, prediction of local response after radiosurgery, and differentiation of radiation injury from local brain metastasis relapse. Importantly, high diagnostic accuracies of 80–90% can be achieved by most approaches, despite a large variety in terms of applied imaging techniques and computational methods.ConclusionClinical application of automated image analyses based on radiomics and artificial intelligence has a great potential for improving radiotherapy in patients with malignant brain tumors. However, a common problem associated with these techniques is the large variability and the lack of standardization of the methods applied.
000875334 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000875334 536__ $$0G:(GEPRIS)428090865$$aDFG project 428090865 - Radiomics basierend auf MRT und Aminosäure PET in der Neuroonkologie $$c428090865$$x1
000875334 588__ $$aDataset connected to CrossRef
000875334 7001_ $$0P:(DE-HGF)0$$aRuge, Maximilian I.$$b1
000875334 7001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b2$$ufzj
000875334 7001_ $$0P:(DE-Juel1)145110$$aLohmann, Philipp$$b3$$ufzj
000875334 773__ $$0PERI:(DE-600)2003907-4$$a10.1007/s00066-020-01626-8$$p856–867$$tStrahlentherapie und Onkologie$$v196$$x1439-099X$$y2020
000875334 8564_ $$uhttps://juser.fz-juelich.de/record/875334/files/Kocher2020_Article_ApplicationsOfRadiomicsAndMach.pdf$$yOpenAccess
000875334 8564_ $$uhttps://juser.fz-juelich.de/record/875334/files/Kocher2020_Article_ApplicationsOfRadiomicsAndMach.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000875334 909CO $$ooai:juser.fz-juelich.de:875334$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000875334 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173675$$aForschungszentrum Jülich$$b0$$kFZJ
000875334 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b2$$kFZJ
000875334 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b3$$kFZJ
000875334 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000875334 9141_ $$y2020
000875334 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000875334 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000875334 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000875334 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSTRAHLENTHER ONKOL : 2017
000875334 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000875334 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000875334 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000875334 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000875334 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000875334 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000875334 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000875334 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000875334 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000875334 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000875334 920__ $$lyes
000875334 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000875334 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1
000875334 980__ $$ajournal
000875334 980__ $$aVDB
000875334 980__ $$aUNRESTRICTED
000875334 980__ $$aI:(DE-Juel1)INM-3-20090406
000875334 980__ $$aI:(DE-Juel1)INM-4-20090406
000875334 9801_ $$aFullTexts