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Abstract
Background Magnetic resonance imaging (MRI) and amino acid positron-emission tomography (PET) of the brain contain
a vast amount of structural and functional information that can be analyzed by machine learning algorithms and radiomics
for the use of radiotherapy in patients with malignant brain tumors.
Methods This study is based on comprehensive literature research on machine learning and radiomics analyses in
neuroimaging and their potential application for radiotherapy in patients with malignant glioma or brain metastases.
Results Feature-based radiomics and deep learning-based machine learning methods can be used to improve brain tumor
diagnostics and automate various steps of radiotherapy planning. In glioma patients, important applications are the deter-
mination of WHO grade and molecular markers for integrated diagnosis in patients not eligible for biopsy or resection,
automatic image segmentation for target volume planning, prediction of the location of tumor recurrence, and differen-
tiation of pseudoprogression from actual tumor progression. In patients with brain metastases, radiomics is applied for
additional detection of smaller brain metastases, accurate segmentation of multiple larger metastases, prediction of local
response after radiosurgery, and differentiation of radiation injury from local brain metastasis relapse. Importantly, high
diagnostic accuracies of 80–90% can be achieved by most approaches, despite a large variety in terms of applied imaging
techniques and computational methods.
Conclusion Clinical application of automated image analyses based on radiomics and artificial intelligence has a great
potential for improving radiotherapy in patients with malignant brain tumors. However, a common problem associated with
these techniques is the large variability and the lack of standardization of the methods applied.
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Introduction

Neuroimaging is a field of medical imaging that has at-
tracted the most advanced techniques and methods because
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of the brain’s complex structure and rich endowment with
molecular receptors and targets. Most of the available local
treatment options, including radiotherapy and neurosurgery,
heavily depend on precise knowledge of tumor type, loca-
tion, and extent that can only be derived from modern imag-
ing methods such as magnetic resonance imaging (MRI)
and positron-emission tomography (PET) [1]. The usual
sequence of diagnostic and therapeutic procedures in radio-
therapy of malignant brain tumors comprises an initial MRI
examination, tissue sampling by biopsy or tumor resection,
histopathologic determination of tumor type (e.g., glioma
vs. metastasis), tumor grade and expression of molecular
markers, segmentation and target volume definition, dose
planning, decision on concomitant and adjuvant systemic
therapy, and, finally, detection and treatment of local re-
lapses or radiation-induced injury of the brain during fol-
low-up.

Each of these steps can be aided by application of ra-
diomics and image-based machine learning. In many in-
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stances, the success of these procedures depends on the
complexity level of the applied imaging techniques. Con-
ventional MRI techniques are T1 weighted, T2 weighted,
and fluid attenuated inversion recovery (FLAIR) images,
while advanced MRI methods include perfusion-weighted
imaging (PWI), diffusion-weighted imaging (DWI) includ-
ing its variants such as diffusion-tensor imaging (DTI), and
MR spectroscopy (MRS). The applied machine learning
methods mainly comprise feature-based radiomics, where
modeling is based on a mathematically predefined set of
features extracted from a manually segmented image, and
deep learning approaches where the complete model is
trained on the imaging data and does not necessarily re-
quire a segmented input. However, the applied imaging and
computational methods vary substantially and are far from
being standardized. The following review aims at providing
an overview of the results that were achieved by different
machine learning approaches for patients with malignant
glioma and metastases.

Glioma

Pre-therapeutic classification and molecular
characterization

In 2016, the World Health Organization (WHO) published
revised guidelines for the classification of tumors of the
central nervous system. The most important glioma types
in which radiotherapy is integrated into the treatment
concept are WHO grade II diffuse astrocytomas and oligo-
dendrogliomas, WHO grade III anaplastic astrocytomas
and anaplastic oligodendrogliomas, and WHO grade IV
glioblastomas. The classification is based on both tumor
histology as well as the presence of a mutation in the
isocitrate dehydrogenase (IDH) gene and the loss of het-
erozygosity (LOH) of the 1p/19q chromosome arms, which
allows an integrated diagnosis according to the WHO
classification 2016 [2]. Possible treatment strategies for
radiotherapy of glioma patients including concomitant and
adjuvant chemotherapy are predominantly based on the
WHO grade and, more importantly, on molecular charac-
teristics of the tumor [3], namely the IDH genotype [4],
the 1p/19q status [5–7], and the O6-methylguanine-DNA
methyltransferase (MGMT) promoter methylation status
[8–10]. The diagnosis of a malignant glioma and the de-
termination of the molecular markers are usually based
on tissue samples obtained by tumor resection or stereo-
tactic biopsy. However, approximately 15% of glioma are
unresectable [11, 12], and stereotactic biopsy carries a mea-
surable risk for morbidity, especially in the older population
[13]. Therefore, several studies have investigated the ap-
plication of radiomics for determination of WHO grade

[14–21] and molecular characteristics [22–40] in glioma.
Results of selected reports applying radiomics or other
machine learning methods on conventional MRI, advanced
MRI, and PET are reported in more detail in the following
sections.

Determination of WHO grade in patients with newly
diagnosed gliomas

Ditmer and colleagues [15] investigated the diagnostic ac-
curacy of histogram-based radiomics analysis of post-con-
trast T1-weighted MRI for the differentiation of high-grade
from low-grade gliomas in 94 patients. The highest diag-
nostic accuracy was achieved by using the mean of the
histograms (area under curve, AUC, 0.9; sensitivity 93%;
specificity 86%). However, the dataset was highly unbal-
anced and parameter combinations were not investigated.
Cho and colleagues [14] applied a radiomics approach us-
ing different machine learning classifiers for glioma grading
based on 285 datasets from the Brain Tumor Segmentation
(BraTS) Challenge 2017 [41] comprising pre- and post-
contrast T1-weighted, T2-weighted, and FLAIR MRI. Af-
ter calculation of 468 radiomics features, 5 were selected
for use in a random forest classifier that showed the highest
AUC of 0.92 after fivefold cross validation.

Besides conventional MRI, several groups have also used
advanced MRI methods in combination with radiomics
analyses for glioma grading. Sengupta and colleagues [17]
used features extracted from conventional MRI and from
PWI. The model generated by a support vector machine
classifier yielded low classification errors ranging from
3.7% for WHO grade II vs. III up to 9.4% for WHO
grade II vs. grade III vs. grade IV. Similarly, Takahashi
and colleagues [18] evaluated T2-weighted MRI in combi-
nation with DWI for differentiation of glioblastoma from
lower-grade glioma in 54 patients. After feature selection,
a support vector machine classifier using 6 parameters
extracted from DWI demonstrated the best performance
in the test dataset (AUC, 0.93). Besides MRI radiomics,
Pyka and colleagues evaluated the ability of amino acid
PET radiomics using the tracer O-(2-[18F]fluoroethyl)-L-
tyrosine (FET) for glioma grading [40]. The combination
of textural features calculated from the grey-level neigh-
borhood difference matrix and the metabolic tumor volume
yielded a diagnostic accuracy of 85% for the differentiation
of WHO grade III and IV gliomas.

Yang and colleagues [21] investigated the usefulness of
deep learning-based radiomics using convolutional neural
networks (CNNs) for glioma grading in a group of 113
patients. Conventional and advanced MRI including PWI
and DWI were available and two commonly used CNNs
(AlexNet and GoogLeNet) were explored. The CNNs were
applied in two forms. First, only the network structure was
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taken over and the networks were trained from scratch us-
ing the MR images. Second, the networks were used with
the connection weights already pretrained on a dataset of
1.2 million non-medical images from “ImageNet,” a large-
scale natural image database, and were only finetuned by
retraining the first convolutional layer and the final fully
connected layers on the MR images. The pretrained, fine-
tuned GoogLeNet showed the best classification accuracy
in the test dataset (AUC 0.94). This study demonstrates
that pretrained CNNs can be useful for clinical decision-
making in patients with gliomas, especially when the num-
ber of available patients is low. In summary, assessment
of WHO grade in newly diagnosed gliomas by means of
machine learning methods achieves an accuracy of approx-
imately 90% and may thus be of clinical benefit in patients
unsuitable for resection or biopsy.

Determination of IDH genotype and 1p/19q status in
patients with newly diagnosed gliomas

Once the diagnosis of a diffuse glioma has been made,
usually from tissue sampling, the treatment plan, includ-
ing dose, type, and fractionation of radiotherapy as well as
the sequence of chemotherapy, is mainly determined by the
molecular characteristics of the tumor based on the WHO
classification [3]. Many groups have shown that these may
also be derived non-invasively from imaging by applica-
tion of machine learning [22–25, 33–35, 38, 39, 42, 43].
Zhang and co-workers [43] used conventional MRI as well
as DWI and extracted a total of 2970 features from 120 pa-
tients with WHO grade III and IV gliomas. Finally, a sub-
set of 386 features was used to build a model based on
a random forest classification, resulting in an accuracy of
89% for IDH prediction in the validation dataset. In WHO
grade II and III gliomas, Zhou and colleagues [39] showed
that a logistic regression model with only three features ob-
tained from conventional MRI of 165 patients predicted the
IDH genotype as well as the 1p/19q co-deletion status with
AUC values of 0.86 and 0.96, respectively. In a subsequent
study [38], Zhou and colleagues extracted radiomics fea-
tures from conventional MRI of a large multicentric dataset
of more than 500 patients. The model was built using a ran-
dom forest classifier and validated using another set of MR
images from The Cancer Imaging Archive (TCIA). The
IDH genotype could be predicted with an AUC of 0.92 in
the test cohort. Lu and colleagues [34] used conventional
MRI data from 214 glioma patients from TCIA. Addition-
ally, 70 patients with MRI scans from different institutions
were used for model testing. A multi-level machine learning
model based on support vector machine classifiers was used
and allowed classification of IDH and 1p/19q status with
accuracies of 88% and 96%, respectively. Lohmann and
colleagues [33] used FET PET radiomics for preoperative

prediction of IDH genotype in a cohort of 84 glioma pa-
tients and identified a simple two-parameter logistic regres-
sion model that achieved a diagnostic accuracy of 80% after
10-fold cross validation. A subgroup analysis of 28 patients
measured on a high-resolution BrainPET scanner showed
the highest accuracy of 86% after 10-fold cross validation.

Again, deep learning-based radiomics approaches have
also been investigated for prediction of molecular character-
istics in gliomas. Chang and co-workers [22] used a resid-
ual CNN for IDH genotype prediction on conventional MRI
from a large cohort of 496 glioma patients from three differ-
ent institutions and achieved an accuracy of 86% in an in-
dependent test set. The accuracy could be further increased
to 89% by the incorporation of age at diagnosis. Eichinger
and colleagues [24] used a set of local binary pattern fea-
tures extracted from T2-weighted MRI and DTI for train-
ing of a CNN with a single hidden layer. The prediction
of IDH genotype yielded a diagnostic accuracy of 95% in
the test dataset. These results suggest that radiomics has
the potential to substitute neuropathological assessment of
IDH mutation and 1p/19q LOH status in glioma patients in
whom tissue sampling is not feasible.

Determination of MGMT promoter methylation status

The methylation status of the MGMT promoter is of great
value for predicting the response to alkylating chemother-
apy and has also been determined using advanced im-
age analyses. Korfiatis and colleagues [28] predicted
the MGMT promoter methylation status in patients with
glioblastoma with a sensitivity of 80% and a specificity of
81% using a four-parameter model based on T2-weighted
MRI. Xi and co-workers [36] calculated 1665 radiomics
features from conventional MRI and generated a model
from a subset of 36 features, resulting in an accuracy
of 87% in the validation data and 80% in a test dataset.
Similarly, Li and colleagues [31] extracted 1705 radiomics
features from conventional MRI and built a predictive ran-
dom forest model using a subset of six features. The final
model resulted in an AUC of 0.88. The combination of
clinical factors with radiomic features did not further im-
prove model performance. Kong and colleagues [27] used
FDG PET-based radiomics in 107 patients with primary
glioma and extracted a total of 1561 features for prediction
of MGMT promoter methylation status. Five radiomics
features were finally selected to construct the radiomics
signature using a support vector machine classifier. The
model achieved an AUC of 0.94 in the validation and 0.86
in the test cohort.

By means of a bidirectional, recurrent CNN that lever-
ages the spatial aspects of three-dimensional MRI scans,
Han and Kamdar [25] obtained an accuracy of 67% in
the validation dataset and 62% in the test data. Korfiatis

K



Strahlenther Onkol (2020) 196:856–867 859

and colleagues [29] compared three different residual deep
neural network (ResNet) architectures for the prediction
of MGMT promoter methylation status based on conven-
tional MRI data from 155 patients. The authors found that
the ResNet50 with a 50-layer architecture was the best-
performing model, achieving an accuracy of 95% in the
test dataset. Thus, promising results also exist regarding
non-invasive, image-based assessment of MGMT promoter
methylation status.

Image segmentation and delineation of planning
target volumes

Malignant gliomas tend to grow in typical patterns and in-
duce a number of characteristic tissue changes. The main
tumor compartments, also called “segments” in image pro-
cessing, comprise the necrotic core, contrast-enhancing tu-
mor, non-enhancing tumor, and perifocal edema. Fast and
reliable labeling (contouring) of these segments is a crucial
task in many areas of neuro-oncology such as radiother-
apy and image-based follow-up [44]. Numerous algorithms
have been developed for this purpose [45] and a periodically
held challenge (the Multimodal Brain Tumor Image Seg-
mentation Benchmark, BRATS) has been set up to compare
their efficacy [41, 46]. Today, the best-performing tools are
usually based on CNNs [47, 48], which achieve high seg-
mentation accuracies (Dice similarity coefficients) where
almost 90% of the voxels are correctly labeled, which is the
order of magnitude that experienced physicians can achieve
[44]. In radiotherapy planning for malignant glioma, delin-
eation of gross tumor volume (GTV) and clinical target vol-
ume (CTV) could in principle be automatically performed
by these software tools [49]. A basic requirement is that
segmentation should not only work for untreated tumors
but also in less well-defined situations, e.g., after tumor
resection, which is the most common situation in radiother-
apy for malignant glioma. Vendors of radiotherapy planning
systems should aim at integration of these tools into their
software in order to accelerate and standardize the contour-
ing process. A powerful segmentation toolkit for scientific
use is publicly available at: https://github.com/neuronflow/
BraTS-Toolkit.

Prediction of local relapse location after
radiotherapy

In malignant glioma, approximately 80–90% of recurrences
that develop after macroscopic tumor resection and postop-
erative local irradiation with doses of approximately 60Gy
are located within a distance of 2cm to the margin of the
resection cavity and will occur within 6–9 months after ini-
tiation of radiotherapy [50–54]. This observation was used
for recommending the size of the geometrical margin be-

tween the CTV and the GTV in both European and North
American guidelines [55, 56]. However, this procedure still
results in considerably large volumes of irradiated brain,
and almost all attempts to escalate the radiation dose up to
80–90Gy within a geometrically defined CTV have failed to
improve the prognosis of these patients [57–60]. Assuming
that the direction of tumor spread is foreseeable and that
a dose–response relationship exists for malignant glioma,
prediction of the precise location of a recurrence would be
of significant value. Ideally, a so-called tumor infiltration
map of the peritumoral region should be generated that de-
picts the areas with the highest risk of recurrence, which, in
turn, could be targeted by higher doses. Several approaches
including conventional imaging analysis methods and ra-
diomics have been applied to achieve this goal.

Amino acid PET was used for definition of the CTV in
a small study with focal dose escalation to 72Gy. Although
the results were encouraging in terms of survival [61], there
was only a small overlap between the PET signals at recur-
rence and the PET signals used for dose planning [62]. In
a comparable study, 63% of the recurrent tumor volume
was located outside the PET-defined GTV [63]. However,
it was shown that the GTV–CTV margins could be reduced
by 4mm for the PET-defined GTV in comparison to the
MRI-defined GTV in order to include 100% of the recur-
rences.

In addition to PET, advanced MR imaging techniques
have been applied for predicting the spread of glioma cells.
By use of DWI and DTI, regions with restricted diffusion
due to increased cellular density can be identified. Indeed,
fractional anisotropy (FA), a measure of directed diffusion,
was found to be significantly lower in regions with later
tumor recurrence [64]. Also, areas of the preoperative peri-
tumoral region with a lowered apparent diffusion coefficient
(ADC) overlapped with the region of the later recurrences
by 60% [65]. DTI and further advanced MR can also be
used to depict the orientation and density of white-matter
tracts in the vicinity of the macroscopic tumor. By this ap-
proach, it was shown that tumor growth follows the tracts
to some extent [66] and that this fact can be used to foresee
which brain regions are predominantly affected by recurrent
tumor growth [67].

However, the most promising approaches are proba-
bly those that use advanced, multiparametric MR imaging
in conjunction with radiomics and machine learning. In
a series of investigations, a group from the University
of Philadelphia applied conventional and advanced MR
techniques (pre- and post-contrast T1-weighted MRI, T2-
weighted MRI, PWI, and DTI) to determine FA, radial
diffusivity, axial diffusivity, ADC, relative cerebral blood
volume, and a number of associated first-and second-order
features in each voxel of the peritumoral region. A model
was trained to predict the voxel’s risk for being involved
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in a recurrent tumor, which resulted in a tumor infiltration
map that had an overall accuracy of approximately 90%
[68–70]. If these maps were routinely available, postoper-
ative radiotherapy of malignant glioma could be far more
individualized compared to the present practice.

Prediction of progression-free and overall survival

In radiotherapy planning, not only the putative location of
a future recurrence, but also the time interval to progression
is of major importance. Methods including radiomics and
machine learning have therefore also been used to predict
progression-free (PFS) and overall survival (OS), which are
both closely related to the time to progression. When us-
ing radiomic features from standard preoperative MRI of
the primary tumor or the postoperative peritumoral region,
predictive models for PFS and OS were developed that out-
performed those based on clinical features alone [71, 72].
Also, the performance of these models improved signif-
icantly when using advanced MR imaging features, e.g.,
from PWI or DTI, and combining them with clinical fac-
tors [73–76]. In the era of prognostic and predictive molec-
ular markers, the imaging features may seem of less im-
portance. However, Kickingereder and colleagues demon-
strated in a cohort of IDH-wildtype glioblastoma patients
with known MGMT methylation status that the addition
of radiomic features to a comprehensive model compris-
ing clinical, therapeutic, and molecular features could still
improve the prediction accuracy [74].

Differentiation of tumor progression from
pseudoprogression

The term pseudoprogression describes the occurrence of
a progressive enhancing lesion on MRI within 12 weeks
after radiotherapy alone or radiotherapy with concomitant
and adjuvant temozolomide chemotherapy in patients with
malignant gliomas with spontaneous improvement without
any treatment change [77, 78]. Due to its clinical impor-
tance, this time-dependent definition of pseudoprogression
was included in the recommendations of the Response As-
sessment in Neuro-Oncology (RANO) working group [79].
Several studies have already demonstrated the usefulness of
amino acid PET as well as PWI for this challenging clinical
task [77, 80–82]. However, radiomics and machine learn-
ing might add important diagnostic information to further
improve the diagnostic performance.

Hu and colleagues [83] used conventional and advanced
MRI including DWI and PWI for differentiation of tu-
mor progression from pseudoprogression in 31 patients
who underwent radiochemotherapy after surgical resection.
An eight-dimensional feature vector was constructed, and
a support vector machine classifier yielded an AUC of 0.94

(sensitivity 90%; specificity 94%). These findings were
confirmed by the study from Kim and colleagues [84].
Therein, a multiparametric model incorporating conven-
tional MRI in combination with DWI and PWI showed
a significantly better performance than other models based
on single imaging contrasts with an AUC of 0.85 in the test
dataset.

FET PET radiomics has also been investigated for dif-
ferentiation of tumor progression from pseudoprogression.
Kebir and co-workers [85] used FET PET scans of 14 pa-
tients and applied an unsupervised consensus clustering al-
gorithm for the diagnosis of pseudoprogression, resulting
in a diagnostic accuracy of 75%. However, the number of
patients was very low and the model was not further val-
idated. Lohmann and colleagues [86] also investigated the
potential of FET PET radiomics for this purpose. Thirty-
five glioblastoma patients with imaging findings suspicious
for pseudoprogression within 12 weeks after completion of
radiochemotherapy were included. The final logistic regres-
sion model used three textural features and yielded a diag-
nostic accuracy of 92% after 10-fold cross validation in the
training and 86% in the test dataset. Again, the model has
to prove its performance in a larger cohort study.

A few studies have applied deep learning-based ra-
diomics to classify seemingly progressing lesions. Jang
and co-workers [87] used post-contrast MR images from
78 patients from two institutions. The developed CNN in-
corporated both clinical and imaging features and achieved
an AUC of 0.83 in the test dataset. Interestingly, models
based solely on clinical or imaging features showed inferior
performance, highlighting the importance of incorporation
of clinical features. Bachhi and colleagues [88] used a CNN
based on conventional MRI and DWI. In a cohort of 55 pa-
tients, the CNNmodel based on DWI and FLAIR sequences
in combination achieved the highest diagnostic accuracy
of 82% in the test dataset. Akbari and colleagues [89] also
used multiparametric MRI data consisting of conventional
MRI as well as DWI and PWI in a cohort of 63 patients
where detailed histopathological confirmation of the di-
agnosis was available for all patients. Classical radiomics
features as well as deep learning-based features were com-
bined for classification using support vector machines. The
final model achieved a diagnostic accuracy for the diagnosis
of pseudoprogression of 87% (AUC 0.92) after leave-one-
out cross validation. The accuracy in the inter-institutional
test cohort was 75% (AUC 0.8). Of note, the workflow can
be easily adapted, as the authors used a freely available
software toolkit (Cancer Imaging Phenomics Toolkit). Re-
cently, Li and co-workers [90] introduced a novel feature-
learning method based on deep convolutional generative
adversarial networks (DCGAN) and a CNN (AlexNet),
termed DC-AL GAN. Discriminative features identified by
DC-AL GAN were used for classification by support vector
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machines, resulting in a diagnostic accuracy of 92% (AUC,
0.95) after 10-fold cross validation.

Differential diagnosis

Glioblastoma and brain metastases are the two most com-
mon malignant brain tumors in adults and often present
similar clinical and imaging characteristics on conventional
MRI [91, 92]. Consequently, differential diagnosis based
solely on clinical presentation and MRI alone is often chal-
lenging.

Qian and colleagues [93] addressed this question using
MRI radiomics. A large group of 412 patients with un-
treated brain metastases and treatment-naive, newly diag-
nosed glioblastoma was divided into a training and a test co-
hort. Tumors were segmented manually and 1303 radiomic
features were calculated on contrast-enhanced MR images.
The best classifier that showed a high predictive perfor-
mance in the test cohort (AUC 0.90) was a support vector
machine algorithm that used the least absolute shrinkage
and selection operator (LASSO) for feature selection. Also,
the classifier showed a better performance than experienced
neuroradiologists.

Artzi and colleagues [94] extracted 760 radiomics fea-
tures from contrast-enhanced MR images of 439 patients
with brain metastases or glioblastoma. After image pre-
processing and semi-automatic tumor segmentation using
a region-growing algorithm, feature selection and model
generation was performed. Interestingly, the authors identi-
fied the same support vector machine algorithm as the study
by Qian and colleagues described above to have the highest
predictive performance in the test cohort (AUC 0.96) for
the differentiation of brain metastases from glioblastoma.

Brain metastases

Detection and automatic segmentation of brain
metastases

Nowadays, the dominant type of radiotherapy for a limited
number and limited total volume of brain metastases is ra-
diosurgery [95]. Particularly when multiple metastases are
present, manual contouring is a laborious task. Automatic
segmentation of brain metastases for use in radiosurgery
planning differs in several aspects from that of gliomas.
As metastases are thought to have a low infiltrative po-
tential, definition of the GTV is mainly based on the T1-
weighted, contrast-enhanced MR images with no or only
small GTV–CTV margins, while other tumor segments are
usually not considered. However, some metastases leave
the blood–brain barrier intact, while others grow adjacent
to other contrast-enhancing structures or resemble small

vessels in appearance. Therefore, automatic segmentation
algorithms should be able to both reliably identify brain
metastases (measured by the detection rate and the false-
positive rate) and to accurately contour them (measured by
the Dice similarity coefficient). To achieve this goal, most
groups adapted existing CNN solutions. Liu and colleagues
applied a modified version of the widely used DeepMedic
CNN for use with small metastases (<1.5cm) and achieved
an average Dice coefficient of 0.67 on contrast-enhanced
MR images [96]. The same CNN was used in a dataset
were contrast-enhanced and FLAIR MR images were avail-
able and achieved a Dice coefficient of 0.79 with a typical
detection rate of 93%, which came at the cost of a false-
positive rate of 7.8 metastases per patient [97]. A group
from Stanford used a CNN based on GoogLeNet on con-
trast-enhanced and FLAIR MR images and achieved a Dice
coefficient of 0.79. However, the sensitivity was only 50%
for metastases <7mm but 100% for lesions >22mm at an
average false-positive rate of 8.3 metastases per patient. In
summary, the contouring performance of these automated
systems seems to be at the edge of suitability for clini-
cal use, while secure detection of small metastases is at
present only possible if a considerable number of falsely
labeled non-tumor regions is accepted.

Prediction of local response after radiosurgery of
brain metastases

It is widely believed that the main determinants of local re-
sponse to radiosurgery are tumor volume and prescription
dose; however, the response to radiosurgery is still diffi-
cult to predict in a subset of brain metastases. This may be
partly due to the more radioresistant tumor cells residing at
the border of a necrotic core that is present in a proportion
of the metastases, and to differences in the tumor vascula-
ture that takes part in promoting the response to single high-
dose irradiation [98]. As these tumor properties may be re-
flected in the radiological appearance of the metastasis and
its surrounding area, radiomics is a promising tool for pre-
dicting response after radiosurgery. Indeed, simple features
such as the presence of a necrotic core [99], the fraction of
contrast-enhancing tumor tissue [100], or the extension of
the perifocal edema [101] have been shown to impact on
response or survival. The experience with more advanced
imaging methods and radiomics is limited so far. However,
by training a simple CNN on image patches from a cranial
computed tomography, Cha and co-workers were able to
classify tumors as responding vs. non-responding with an
AUC of approximately 0.8 [102]. In a recent report, a clas-
sic radiomics approach was applied with features extracted
from contrast-enhanced and FLAIR MR images of the core
metastasis and its immediate vicinity. By adding any of the
top-ranked radiomic features to a model based on pure clin-
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ical and dosimetric factors (dose, isodose, diameter, number
and location of metastases, previous whole-brain radiother-
apy), the AUC for predicting response could be increased
from approximately 0.7 to 0.8 [103].

Differentiation of radiation injury from local brain
metastasis relapse

Following radiosurgery for brain metastases, radiation in-
jury of the brain tissue may develop in approximately
5–20% of patients [104]. Radiation injury is usually sus-
pected if new contrast-enhancing lesions appear in or
adjacent to the GTV and is often indistinguishable from
local brain metastasis relapse using conventional MRI
alone. The pathological mechanisms involved in these two
processes differ substantially [105] and should therefore be
distinguishable by a radiomics analysis of the associated
image changes.

Peng and colleagues [106] evaluated the usefulness of
MRI radiomics for this important question. Sixty-six pa-
tients with 82 lesions treated with stereotactic radiosurgery
and imaging findings on contrast-enhanced and FLAIR
MRI suspicious for tumor recurrence were included in
the study. Fifty-one radiomics features (3 shape features,
14 histogram-based features, and 34 textural features) were
extracted for each lesion on each MRI contrast. Models
were generated using the IsoSVM algorithm, which per-
forms both feature selection and classification [107]. No
separate dataset was available for model testing. However,
cross validation was performed to assess overall model
performance. The model reached an area under the receiver
operating characteristic curve (AUC) of 0.81, with a speci-
ficity of 65% and a sensitivity of 87%. On the contrary,
experienced radiologists could only classify 73% of the
cases, with a sensitivity of 97% and a specificity of only
19%.

Similarly, Zhang and colleagues [108] used pre- and
post-contrast T1-weighted MR images, T2, and FLAIR
from 87 patients after Gamma Knife (Elekta, Stockholm,
Sweden) radiosurgery to calculate 285 radiomics fea-
tures. Interestingly, imaging data from two timepoints were
available, so that the authors also investigated feature re-
producibility to identify a feature subset with reproducible
values. Changes in radiomics features (so-called delta ra-
diomics) from one follow-up timepoint to the next were
evaluated and used for differentiation of radiation necrosis
and tumor progression. The final model generated by an
ensemble classifier had an overall predictive accuracy of
73% and an AUC of 0.73 after cross validation. Again, no
separate test dataset was available.

Besides MRI, amino acid PET has also been investi-
gated to evaluate radiomics for the differentiation of treat-
ment-related changes from brain metastasis recurrence. It

has been demonstrated that evaluation of the time–activity
curves (TAC) that represent the tracer uptake over time
is helpful for differentiation of treatment-related changes
from brain metastasis recurrence [109]. However, this re-
quires a time-consuming dynamic FET PET scan of at least
40min acquisition time or more. Therefore, Lohmann and
colleagues [110] calculated 62 textural parameters on static
FET PET scans from 47 patients with MRI findings suspi-
cious for tumor recurrence after radiosurgery. Combinations
of conventional FET PET and textural features were inves-
tigated using ROC analysis without prior feature selection.
The diagnostic accuracy of conventional FET PET param-
eters was in the range of 81–83% and could be slightly in-
creased to 85%when combined with textural features. How-
ever, no dataset for validation or testing was available. In
a subsequent study, Lohmann and colleagues [111] investi-
gated the value of combining FET PET and MRI radiomics
for the differentiation of treatment-related changes from
brain metastasis recurrence. Fifty-two patients with newly
or progressive contrast-enhancing lesions on MRI after ra-
diotherapy were additionally investigated using FET PET.
After feature selection, logistic regression models limited
to a maximum of five parameters to avoid over-fitting were
generated for the combined PET/MRI features and for each
modality separately and validated using cross validation; no
test dataset was available. The highest diagnostic accuracy
of 89% (specificity 96%, sensitivity 85%) was achieved by
the combination of MRI and FET PET features, suggest-
ing that the combined FET PET/MRI radiomics analysis
encoded more diagnostic information than either modality
alone. In summary, both MRI- and PET-based radiomics
achieve classification accuracies far above chance for dif-
ferentiation of radiation injury from tumor recurrence and
thus demonstrate the potential of this approach.

Conclusion

Feature-based radiomics and deep learning-based machine
learning methods can be used to facilitate and automate
many of the diagnostic and therapeutic steps needed in ra-
diotherapy of malignant brain tumors with high accuracy.
A common problem associated with the application of the
derived models is the large variability and the lack of stan-
dardization of both image acquisition and computational
methods [112]. From the perspective of radiotherapy, the
most promising applications include automatic segmenta-
tion of the target volumes, prediction of the location and
timepoint of local recurrences of glioma by tumor infil-
tration maps, and differentiation of treatment-related tissue
changes from true recurrences.
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