Hauptseite > Publikationsdatenbank > Coevolutionary Data-based Interaction Networks Approach Highlighting Key Residues across Protein Families: the Case of the G-protein Coupled Receptors > print |
001 | 875340 | ||
005 | 20240625095123.0 | ||
024 | 7 | _ | |a 10.1016/j.csbj.2020.05.003 |2 doi |
024 | 7 | _ | |a 2128/25475 |2 Handle |
024 | 7 | _ | |a altmetric:82951166 |2 altmetric |
024 | 7 | _ | |a pmid:32489528 |2 pmid |
024 | 7 | _ | |a WOS:000607729400014 |2 WOS |
037 | _ | _ | |a FZJ-2020-01963 |
082 | _ | _ | |a 570 |
100 | 1 | _ | |a Baldessari, Filippo |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Coevolutionary Data-based Interaction Networks Approach Highlighting Key Residues across Protein Families: the Case of the G-protein Coupled Receptors |
260 | _ | _ | |a Gotenburg |c 2020 |b Research Network of Computational and Structural Biotechnology (RNCSB) |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1597155982_5172 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a We present an approach that, by integrating structural data with Direct Coupling Analysis, is able to pinpoint most of the interaction hotspots (i.e. key residues for the biological activity) across very sparse protein families in a single run. An application to the Class A G-protein coupled receptors (GPCRs), both in their active and inactive states, demonstrates the predictive power of our approach. The latter can be easily extended to any other kind of protein family, where it is expected to highlight most key sites involved in their functional activity. |
536 | _ | _ | |a 574 - Theory, modelling and simulation (POF3-574) |0 G:(DE-HGF)POF3-574 |c POF3-574 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Capelli, Riccardo |0 P:(DE-Juel1)174546 |b 1 |e Corresponding author |u fzj |
700 | 1 | _ | |a Carloni, Paolo |0 P:(DE-Juel1)145614 |b 2 |u fzj |
700 | 1 | _ | |a Giorgetti, Alejandro |0 P:(DE-Juel1)165199 |b 3 |u fzj |
773 | _ | _ | |a 10.1016/j.csbj.2020.05.003 |g p. S200103702030266X |0 PERI:(DE-600)2694435-2 |p 1153-1159 |t Computational and structural biotechnology journal |v 18 |y 2020 |x 2001-0370 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/875340/files/Invoice_OAD0000046537.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/875340/files/1-s2.0-S200103702030266X-main.pdf |
856 | 4 | _ | |x pdfa |u https://juser.fz-juelich.de/record/875340/files/Invoice_OAD0000046537.pdf?subformat=pdfa |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/875340/files/1-s2.0-S200103702030266X-main.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:875340 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)174546 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)145614 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)165199 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-574 |2 G:(DE-HGF)POF3-500 |v Theory, modelling and simulation |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b COMPUT STRUCT BIOTEC : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-5-20120330 |k IAS-5 |l Computational Biomedicine |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-9-20140121 |k INM-9 |l Computational Biomedicine |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IAS-5-20120330 |
980 | _ | _ | |a I:(DE-Juel1)INM-9-20140121 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|