000875352 001__ 875352
000875352 005__ 20240712084510.0
000875352 0247_ $$2doi$$a10.1002/adsu.202000070
000875352 0247_ $$2Handle$$a2128/25732
000875352 0247_ $$2altmetric$$aaltmetric:84162515
000875352 0247_ $$2WOS$$aWOS:000531804800001
000875352 037__ $$aFZJ-2020-01970
000875352 082__ $$a333.7
000875352 1001_ $$0P:(DE-Juel1)173834$$aLee, Minoh$$b0$$eCorresponding author$$ufzj
000875352 245__ $$aA Bias‐Free, Stand‐Alone, and Scalable Photovoltaic–Electrochemical Device for Solar Hydrogen Production
000875352 260__ $$aWeinheim$$bWiley-VCH$$c2020
000875352 3367_ $$2DRIVER$$aarticle
000875352 3367_ $$2DataCite$$aOutput Types/Journal article
000875352 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1600949773_17524
000875352 3367_ $$2BibTeX$$aARTICLE
000875352 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000875352 3367_ $$00$$2EndNote$$aJournal Article
000875352 520__ $$aAlthough photovoltaic–electrochemical (PV–EC) water splitting is likely to be an important and powerful tool to provide environmentally friendly hydrogen, most developments in this field have been conducted on a laboratory scale so far. In order for the technology to make a sizeable impact on the energy transition, scaled up devices must be developed. Here a scalable (64 cm2 aperture area) artificial PV–EC device composed of triple‐junction thin‐film silicon solar cells in conjunction with an electrodeposited bifunctional nickel iron molybdenum water‐splitting catalyst is shown. The device shows a solar to hydrogen efficiency of up to 4.67% (5.33% active area, H2 production rate of 1.26 μmol H2/s) without bias assistance and wire connection and works for 30 min. The gas separation is enabled by incorporating a membrane in a 3D printed device frame. In addition, a wired small area device is also fabricated in order to show the potential of the concept. The device is operated for 127 h and initially 7.7% solar to hydrogen efficiency with a PV active area of 0.5 cm2 is achieved.
000875352 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000875352 588__ $$aDataset connected to CrossRef
000875352 7001_ $$0P:(DE-Juel1)145058$$aTuran, Bugra$$b1
000875352 7001_ $$0P:(DE-Juel1)142337$$aBecker, Jan‐Philipp$$b2
000875352 7001_ $$0P:(DE-Juel1)167359$$aWelter, Katharina$$b3
000875352 7001_ $$0P:(DE-Juel1)159235$$aKlingebiel, Benjamin$$b4
000875352 7001_ $$0P:(DE-Juel1)156529$$aNeumann, Elmar$$b5
000875352 7001_ $$0P:(DE-Juel1)159368$$aSohn, Yoo Jung$$b6$$ufzj
000875352 7001_ $$0P:(DE-Juel1)130268$$aMerdzhanova, Tsvetelina$$b7
000875352 7001_ $$0P:(DE-Juel1)159457$$aKirchartz, Thomas$$b8
000875352 7001_ $$0P:(DE-Juel1)130238$$aFinger, Friedhelm$$b9
000875352 7001_ $$0P:(DE-Juel1)143905$$aRau, Uwe$$b10$$ufzj
000875352 7001_ $$0P:(DE-Juel1)130246$$aHaas, Stefan$$b11
000875352 773__ $$0PERI:(DE-600)2880982-8$$a10.1002/adsu.202000070$$gp. 2000070 -$$n8$$p2000070$$tAdvanced sustainable systems$$v4$$x2366-7486$$y2020
000875352 8564_ $$uhttps://juser.fz-juelich.de/record/875352/files/adsu.202000070.pdf$$yOpenAccess
000875352 8564_ $$uhttps://juser.fz-juelich.de/record/875352/files/adsu.202000070.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000875352 8767_ $$92020-04-23$$d2020-05-13$$eHybrid-OA$$jDEAL$$lDEAL: Wiley$$padsu.202000070
000875352 909CO $$ooai:juser.fz-juelich.de:875352$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000875352 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173834$$aForschungszentrum Jülich$$b0$$kFZJ
000875352 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145058$$aForschungszentrum Jülich$$b1$$kFZJ
000875352 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142337$$aForschungszentrum Jülich$$b2$$kFZJ
000875352 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167359$$aForschungszentrum Jülich$$b3$$kFZJ
000875352 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159235$$aForschungszentrum Jülich$$b4$$kFZJ
000875352 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156529$$aForschungszentrum Jülich$$b5$$kFZJ
000875352 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159368$$aForschungszentrum Jülich$$b6$$kFZJ
000875352 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130268$$aForschungszentrum Jülich$$b7$$kFZJ
000875352 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159457$$aForschungszentrum Jülich$$b8$$kFZJ
000875352 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130238$$aForschungszentrum Jülich$$b9$$kFZJ
000875352 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143905$$aForschungszentrum Jülich$$b10$$kFZJ
000875352 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130246$$aForschungszentrum Jülich$$b11$$kFZJ
000875352 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000875352 9141_ $$y2020
000875352 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000875352 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index
000875352 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000875352 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000875352 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000875352 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000875352 9801_ $$aAPC
000875352 9801_ $$aFullTexts
000875352 980__ $$ajournal
000875352 980__ $$aVDB
000875352 980__ $$aUNRESTRICTED
000875352 980__ $$aI:(DE-Juel1)IEK-5-20101013
000875352 980__ $$aAPC
000875352 981__ $$aI:(DE-Juel1)IMD-3-20101013