001     875352
005     20240712084510.0
024 7 _ |a 10.1002/adsu.202000070
|2 doi
024 7 _ |a 2128/25732
|2 Handle
024 7 _ |a altmetric:84162515
|2 altmetric
024 7 _ |a WOS:000531804800001
|2 WOS
037 _ _ |a FZJ-2020-01970
082 _ _ |a 333.7
100 1 _ |a Lee, Minoh
|0 P:(DE-Juel1)173834
|b 0
|e Corresponding author
|u fzj
245 _ _ |a A Bias‐Free, Stand‐Alone, and Scalable Photovoltaic–Electrochemical Device for Solar Hydrogen Production
260 _ _ |a Weinheim
|c 2020
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1600949773_17524
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Although photovoltaic–electrochemical (PV–EC) water splitting is likely to be an important and powerful tool to provide environmentally friendly hydrogen, most developments in this field have been conducted on a laboratory scale so far. In order for the technology to make a sizeable impact on the energy transition, scaled up devices must be developed. Here a scalable (64 cm2 aperture area) artificial PV–EC device composed of triple‐junction thin‐film silicon solar cells in conjunction with an electrodeposited bifunctional nickel iron molybdenum water‐splitting catalyst is shown. The device shows a solar to hydrogen efficiency of up to 4.67% (5.33% active area, H2 production rate of 1.26 μmol H2/s) without bias assistance and wire connection and works for 30 min. The gas separation is enabled by incorporating a membrane in a 3D printed device frame. In addition, a wired small area device is also fabricated in order to show the potential of the concept. The device is operated for 127 h and initially 7.7% solar to hydrogen efficiency with a PV active area of 0.5 cm2 is achieved.
536 _ _ |a 121 - Solar cells of the next generation (POF3-121)
|0 G:(DE-HGF)POF3-121
|c POF3-121
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Turan, Bugra
|0 P:(DE-Juel1)145058
|b 1
700 1 _ |a Becker, Jan‐Philipp
|0 P:(DE-Juel1)142337
|b 2
700 1 _ |a Welter, Katharina
|0 P:(DE-Juel1)167359
|b 3
700 1 _ |a Klingebiel, Benjamin
|0 P:(DE-Juel1)159235
|b 4
700 1 _ |a Neumann, Elmar
|0 P:(DE-Juel1)156529
|b 5
700 1 _ |a Sohn, Yoo Jung
|0 P:(DE-Juel1)159368
|b 6
|u fzj
700 1 _ |a Merdzhanova, Tsvetelina
|0 P:(DE-Juel1)130268
|b 7
700 1 _ |a Kirchartz, Thomas
|0 P:(DE-Juel1)159457
|b 8
700 1 _ |a Finger, Friedhelm
|0 P:(DE-Juel1)130238
|b 9
700 1 _ |a Rau, Uwe
|0 P:(DE-Juel1)143905
|b 10
|u fzj
700 1 _ |a Haas, Stefan
|0 P:(DE-Juel1)130246
|b 11
773 _ _ |a 10.1002/adsu.202000070
|g p. 2000070 -
|0 PERI:(DE-600)2880982-8
|n 8
|p 2000070
|t Advanced sustainable systems
|v 4
|y 2020
|x 2366-7486
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/875352/files/adsu.202000070.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/875352/files/adsu.202000070.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:875352
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)173834
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145058
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)142337
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)167359
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)159235
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)156529
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)159368
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)130268
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)159457
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)130238
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)143905
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)130246
913 1 _ |a DE-HGF
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|2 G:(DE-HGF)POF3-100
|v Solar cells of the next generation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21