000875354 001__ 875354
000875354 005__ 20230815122833.0
000875354 0247_ $$2doi$$a10.3389/frwa.2020.00010
000875354 0247_ $$2Handle$$a2128/24881
000875354 0247_ $$2altmetric$$aaltmetric:82038230
000875354 0247_ $$2WOS$$aWOS:000660303300001
000875354 037__ $$aFZJ-2020-01972
000875354 082__ $$a333.7
000875354 1001_ $$0P:(DE-Juel1)169718$$aJakobi, Jannis$$b0$$eCorresponding author$$ufzj
000875354 245__ $$aError Estimation for Soil Moisture Measurements With Cosmic Ray Neutron Sensing and Implications for Rover Surveys
000875354 260__ $$aLausanne$$bFrontiers Media$$c2020
000875354 3367_ $$2DRIVER$$aarticle
000875354 3367_ $$2DataCite$$aOutput Types/Journal article
000875354 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1589460069_12063
000875354 3367_ $$2BibTeX$$aARTICLE
000875354 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000875354 3367_ $$00$$2EndNote$$aJournal Article
000875354 520__ $$aCosmic ray neutron (CRN) sensing allows for non-invasive soil moisture measurements at the field scale and relies on the inverse correlation between aboveground measured epithermal neutron intensity (1eV – 100 keV) and environmental water content. The measurement uncertainty follows Poisson statistics and thus increases with decreasing neutron intensity, which corresponds to increasing soil moisture. In order to reduce measurement uncertainty, the neutron count rate is usually aggregated over 12 or 24 h time windows for stationary CRN probes. To obtain accurate soil moisture estimates with mobile CRN rover applications, the aggregation of neutron measurements is also necessary and should consider soil wetness and driving speed. To date, the optimization of spatial aggregation of mobile CRN observations in order to balance measurement accuracy and spatial resolution of soil moisture patterns has not been investigated in detail. In this work, we present and apply an easy-to-use method based on Gaussian error propagation theory for uncertainty quantification of soil moisture measurements obtained with CRN sensing. We used a 3rd order Taylor expansion for estimating the soil moisture uncertainty from uncertainty in neutron counts and compared the results to a Monte Carlo approach with excellent agreement. Furthermore, we applied our method with selected aggregation times to investigate how CRN rover survey design affects soil moisture estimation uncertainty. We anticipate that the new approach can be used to improve the strategic planning and evaluation of CRN rover surveys based on uncertainty requirements.
000875354 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000875354 536__ $$0G:(GEPRIS)357874777$$aDFG project 357874777 - FOR 2694: Large-Scale and High-Resolution Mapping of Soil Moisture on Field and Catchment Scales - Boosted by Cosmic-Ray Neutrons $$c357874777$$x1
000875354 588__ $$aDataset connected to CrossRef
000875354 7001_ $$0P:(DE-Juel1)129472$$aHuisman, Johan A.$$b1$$ufzj
000875354 7001_ $$0P:(DE-HGF)0$$aSchrön, Martin$$b2
000875354 7001_ $$0P:(DE-Juel1)178715$$aFiedler, Justus$$b3
000875354 7001_ $$0P:(DE-Juel1)168418$$aBrogi, Cosimo$$b4$$ufzj
000875354 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b5$$ufzj
000875354 7001_ $$0P:(DE-Juel1)129440$$aBogena, Heye R.$$b6$$ufzj
000875354 773__ $$0PERI:(DE-600)2986721-6$$a10.3389/frwa.2020.00010$$gVol. 2, p. 10$$p10$$tFrontiers in water$$v2$$x2624-9375$$y2020
000875354 8564_ $$uhttps://juser.fz-juelich.de/record/875354/files/2020-0239322-3.pdf
000875354 8564_ $$uhttps://juser.fz-juelich.de/record/875354/files/2020-0239322-3.pdf?subformat=pdfa$$xpdfa
000875354 8564_ $$uhttps://juser.fz-juelich.de/record/875354/files/frwa-02-00010.pdf$$yOpenAccess
000875354 8564_ $$uhttps://juser.fz-juelich.de/record/875354/files/frwa-02-00010.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000875354 8767_ $$82020-0239322-3$$92020-04-14$$d2020-05-13$$eAPC$$jDeposit$$lDeposit: Frontiers$$p529308$$zUSD 977,50
000875354 909CO $$ooai:juser.fz-juelich.de:875354$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000875354 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000875354 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000875354 9141_ $$y2020
000875354 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169718$$aForschungszentrum Jülich$$b0$$kFZJ
000875354 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129472$$aForschungszentrum Jülich$$b1$$kFZJ
000875354 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178715$$aForschungszentrum Jülich$$b3$$kFZJ
000875354 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168418$$aForschungszentrum Jülich$$b4$$kFZJ
000875354 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b5$$kFZJ
000875354 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129440$$aForschungszentrum Jülich$$b6$$kFZJ
000875354 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000875354 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000875354 980__ $$ajournal
000875354 980__ $$aVDB
000875354 980__ $$aUNRESTRICTED
000875354 980__ $$aI:(DE-Juel1)IBG-3-20101118
000875354 980__ $$aAPC
000875354 9801_ $$aAPC
000875354 9801_ $$aFullTexts