001     875354
005     20230815122833.0
024 7 _ |2 doi
|a 10.3389/frwa.2020.00010
024 7 _ |2 Handle
|a 2128/24881
024 7 _ |2 altmetric
|a altmetric:82038230
024 7 _ |a WOS:000660303300001
|2 WOS
037 _ _ |a FZJ-2020-01972
082 _ _ |a 333.7
100 1 _ |0 P:(DE-Juel1)169718
|a Jakobi, Jannis
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Error Estimation for Soil Moisture Measurements With Cosmic Ray Neutron Sensing and Implications for Rover Surveys
260 _ _ |a Lausanne
|b Frontiers Media
|c 2020
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1589460069_12063
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Cosmic ray neutron (CRN) sensing allows for non-invasive soil moisture measurements at the field scale and relies on the inverse correlation between aboveground measured epithermal neutron intensity (1eV – 100 keV) and environmental water content. The measurement uncertainty follows Poisson statistics and thus increases with decreasing neutron intensity, which corresponds to increasing soil moisture. In order to reduce measurement uncertainty, the neutron count rate is usually aggregated over 12 or 24 h time windows for stationary CRN probes. To obtain accurate soil moisture estimates with mobile CRN rover applications, the aggregation of neutron measurements is also necessary and should consider soil wetness and driving speed. To date, the optimization of spatial aggregation of mobile CRN observations in order to balance measurement accuracy and spatial resolution of soil moisture patterns has not been investigated in detail. In this work, we present and apply an easy-to-use method based on Gaussian error propagation theory for uncertainty quantification of soil moisture measurements obtained with CRN sensing. We used a 3rd order Taylor expansion for estimating the soil moisture uncertainty from uncertainty in neutron counts and compared the results to a Monte Carlo approach with excellent agreement. Furthermore, we applied our method with selected aggregation times to investigate how CRN rover survey design affects soil moisture estimation uncertainty. We anticipate that the new approach can be used to improve the strategic planning and evaluation of CRN rover surveys based on uncertainty requirements.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|x 0
|f POF III
536 _ _ |a DFG project 357874777 - FOR 2694: Large-Scale and High-Resolution Mapping of Soil Moisture on Field and Catchment Scales - Boosted by Cosmic-Ray Neutrons
|0 G:(GEPRIS)357874777
|c 357874777
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-Juel1)129472
|a Huisman, Johan A.
|b 1
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Schrön, Martin
|b 2
700 1 _ |0 P:(DE-Juel1)178715
|a Fiedler, Justus
|b 3
700 1 _ |0 P:(DE-Juel1)168418
|a Brogi, Cosimo
|b 4
|u fzj
700 1 _ |0 P:(DE-Juel1)129549
|a Vereecken, Harry
|b 5
|u fzj
700 1 _ |0 P:(DE-Juel1)129440
|a Bogena, Heye R.
|b 6
|u fzj
773 _ _ |0 PERI:(DE-600)2986721-6
|a 10.3389/frwa.2020.00010
|g Vol. 2, p. 10
|p 10
|t Frontiers in water
|v 2
|x 2624-9375
|y 2020
856 4 _ |u https://juser.fz-juelich.de/record/875354/files/2020-0239322-3.pdf
856 4 _ |u https://juser.fz-juelich.de/record/875354/files/2020-0239322-3.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://juser.fz-juelich.de/record/875354/files/frwa-02-00010.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/875354/files/frwa-02-00010.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:875354
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)169718
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129472
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)178715
|a Forschungszentrum Jülich
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)168418
|a Forschungszentrum Jülich
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129549
|a Forschungszentrum Jülich
|b 5
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129440
|a Forschungszentrum Jülich
|b 6
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-255
|1 G:(DE-HGF)POF3-250
|2 G:(DE-HGF)POF3-200
|a DE-HGF
|l Terrestrische Umwelt
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2020
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21