001     875358
005     20240711101507.0
024 7 _ |a 10.1039/D0SE00896F
|2 doi
024 7 _ |a 2128/26868
|2 Handle
024 7 _ |a WOS:000582936800039
|2 WOS
037 _ _ |a FZJ-2020-01976
082 _ _ |a 660
100 1 _ |a Grube, Thomas
|0 P:(DE-Juel1)129852
|b 0
|e Corresponding author
245 _ _ |a A Techno-Economic Perspective on Solar-to-Hydrogen Concepts through 2025
260 _ _ |a Cambridge
|c 2020
|b Royal Society of Chemistry
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1613575809_9257
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The transition towards a renewable energy-based society is challenged by spatial and temporal imbalances of energy demand and supply. Storage properties and versatility may favor hydrogen to serve as the linking element between renewable energy generation and a variety of sector coupling options. This paper examines four alternative solar-based hydrogen production concepts based on concentrated solar (CSP) or photovoltaic (PV) power generation and solid oxide (SOE) or polymer electrolyte membrane (PEM) electrolysis, namely, CSP-SOE and CSP-PEM, as well as PV-PEM concepts with (PV-PEM I) or without (PV-PEM II) power converters coupling both devices. In this paper, we analyze these concepts in terms of their techno-economic performance in order to determine the levelized cost of hydrogen (LCOH) for the target year 2025, based on different locations with different climate conditions. The analysis was carried out using a broadly applicable computer model based on an hourly resolved time-series of temperature and irradiance. The lowest LCOH was identified in the case of the CSP-SOE and CSP-PEM concepts with 14–17 €-ct per kW per h at high-irradiance locations, which clearly exceed the US Department of Energy (DOE) target of 6 $-ct per kW per h for the year 2020. Moreover, CSP-SOE also shows the highest hydrogen production volumes and, therefore, solar-to-hydrogen efficiencies. Considering the PV-PEM concepts, we found that the application of power converters for the electrical coupling of PV modules and electrolyzers does not contribute to cost reduction due to the higher related investment costs. A further system optimization is suggested regarding the implementation of short-term energy storage, which might be particularly relevant at locations with higher fluctuations in power supply.
536 _ _ |a 134 - Electrolysis and Hydrogen (POF3-134)
|0 G:(DE-HGF)POF3-134
|c POF3-134
|f POF III
|x 0
536 _ _ |a ES2050 - Energie Sytem 2050 (ES2050)
|0 G:(DE-HGF)ES2050
|c ES2050
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Reul, Julian
|0 P:(DE-Juel1)180396
|b 1
700 1 _ |a Reuss, Markus
|0 P:(DE-Juel1)168335
|b 2
700 1 _ |a Calnan, Sonya
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Monnerie, Nathalie
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Schlatmann, Rutger
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Sattler, Christian
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Robinius, Martin
|0 P:(DE-Juel1)156460
|b 7
700 1 _ |a Stolten, Detlef
|0 P:(DE-Juel1)129928
|b 8
773 _ _ |a 10.1039/D0SE00896F
|g Vol. 4, no. 11, p. 5818 - 5834
|0 PERI:(DE-600)2882651-6
|n 11
|p 5818 - 5834
|t Sustainable energy & fuels
|v 4
|y 2020
|x 2398-4902
856 4 _ |u https://juser.fz-juelich.de/record/875358/files/Grube_Thomas_JA_A%20Techno-economic%20Perspective%20on%20....pdf
|y Published on 2020-10-09. Available in OpenAccess from 2021-10-09.
856 4 _ |u https://juser.fz-juelich.de/record/875358/files/d0se00896f.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/875358/files/Grube_Thomas_JA_A%20Techno-economic%20Perspective%20on%20....pdf?subformat=pdfa
|x pdfa
|y Published on 2020-10-09. Available in OpenAccess from 2021-10-09.
909 C O |o oai:juser.fz-juelich.de:875358
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129852
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)180396
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-Juel1)180396
910 1 _ |a HZB
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a DLR
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a HZB
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a DLR
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)156460
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129928
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 8
|6 P:(DE-Juel1)129928
913 1 _ |a DE-HGF
|b Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-134
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Electrolysis and Hydrogen
|x 0
913 2 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SUSTAIN ENERG FUELS : 2017
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Technoökonomische Systemanalyse
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21