000875361 001__ 875361
000875361 005__ 20240709112131.0
000875361 0247_ $$2doi$$a10.1016/j.apenergy.2020.115791
000875361 0247_ $$2ISSN$$a0306-2619
000875361 0247_ $$2ISSN$$a1872-9118
000875361 0247_ $$2Handle$$a2128/26889
000875361 0247_ $$2altmetric$$aaltmetric:91398864
000875361 0247_ $$2WOS$$aWOS:000594123200009
000875361 037__ $$aFZJ-2020-01979
000875361 082__ $$a620
000875361 1001_ $$0P:(DE-HGF)0$$aKoponen, Joonas$$b0
000875361 245__ $$aEffect of Power Quality on the Design of PEM Water Electrolysis Systems
000875361 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020
000875361 3367_ $$2DRIVER$$aarticle
000875361 3367_ $$2DataCite$$aOutput Types/Journal article
000875361 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611252150_17161
000875361 3367_ $$2BibTeX$$aARTICLE
000875361 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000875361 3367_ $$00$$2EndNote$$aJournal Article
000875361 520__ $$aWater electrolyzer technologies may play a key role in the decarbonization of the fossil-fueled world economy. Electrolytic hydrogen production could bridge emission-free power generation and various energy end-use sectors to drive the energy system towards a net zero-emission level. In order to reduce the economic cost of the required energy transition, both the overall system efficiency in converting electrical energy into the chemical energy carried by hydrogen, and the material used to build electrolytic cell stacks, should be optimal. The effect of power quality on the specific energy consumption of proton exchange membrane (PEM) water electrolyzers is investigated with a semi-empirical cell model. An experimentally-defined polarization curve is applied to analyze cell-specific energy consumption as a function of time in the case of sinusoidal current ripples and ripples excited by an industrial 12-pulse thyristor bridge. The results show that the effective electrolyzer cell area should be up to five times as high as an ideal DC power supply when powered by the 12-pulse thyristor rectifier supply to match the specific energy consumption between the two power supply configurations. Therefore, the improvement of power quality is crucial for industrial PEM water electrolyzer systems. The presented approach is applicable to simulate the effect of power quality for different proton exchange membrane electolyzers.
000875361 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000875361 588__ $$aDataset connected to CrossRef
000875361 7001_ $$0P:(DE-HGF)0$$aRuuskanen, Vesa$$b1
000875361 7001_ $$0P:(DE-Juel1)129857$$aHehemann, Michael$$b2$$eCorresponding author
000875361 7001_ $$0P:(DE-Juel1)177930$$aRauls, Edward$$b3
000875361 7001_ $$0P:(DE-HGF)0$$aKosonen, Antti$$b4
000875361 7001_ $$0P:(DE-HGF)0$$aAhola, Jero$$b5
000875361 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b6
000875361 773__ $$0PERI:(DE-600)2000772-3$$a10.1016/j.apenergy.2020.115791$$gVol. 279, p. 115791 -$$p115791 -$$tApplied energy$$v279$$x0306-2619$$y2020
000875361 8564_ $$uhttps://juser.fz-juelich.de/record/875361/files/202101_Effect_of_power_quality_on_electrolysis_post_print.pdf$$yPublished on 2020-09-29. Available in OpenAccess from 2022-09-29.
000875361 909CO $$ooai:juser.fz-juelich.de:875361$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000875361 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129857$$aForschungszentrum Jülich$$b2$$kFZJ
000875361 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177930$$aForschungszentrum Jülich$$b3$$kFZJ
000875361 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b6$$kFZJ
000875361 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b6$$kRWTH
000875361 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000875361 9141_ $$y2020
000875361 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000875361 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000875361 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000875361 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000875361 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000875361 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL ENERG : 2017
000875361 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000875361 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000875361 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000875361 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000875361 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bAPPL ENERG : 2017
000875361 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000875361 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000875361 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000875361 920__ $$lyes
000875361 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000875361 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x1
000875361 9801_ $$aFullTexts
000875361 980__ $$ajournal
000875361 980__ $$aVDB
000875361 980__ $$aUNRESTRICTED
000875361 980__ $$aI:(DE-Juel1)IEK-14-20191129
000875361 980__ $$aI:(DE-Juel1)IEK-3-20101013
000875361 981__ $$aI:(DE-Juel1)IET-4-20191129
000875361 981__ $$aI:(DE-Juel1)ICE-2-20101013
000875361 981__ $$aI:(DE-Juel1)IET-4-20191129