001     875364
005     20240712113241.0
024 7 _ |a 10.1016/j.jpowsour.2020.228619
|2 doi
024 7 _ |a 0378-7753
|2 ISSN
024 7 _ |a 1873-2755
|2 ISSN
024 7 _ |a 2128/25414
|2 Handle
024 7 _ |a altmetric:86745279
|2 altmetric
024 7 _ |a WOS:000564508100001
|2 WOS
037 _ _ |a FZJ-2020-01982
082 _ _ |a 620
100 1 _ |a Privitera, S. M. S.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Highly efficient solar hydrogen production through the use of bifacial photovoltaics and membrane electrolysis
260 _ _ |a New York, NY [u.a.]
|c 2020
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1596116389_8113
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The large-scale implementation of solar hydrogen production requires an optimal combination of photovoltaic systems with suitably-designed electrochemical cells, possibly avoiding power electronics for DC-DC conversion, to decrease costs. Here, a stable, solar-driven water splitting system is presented, obtained through the direct connection of a state-of-the-art proton exchange membrane (PEM) electrolyzer to a bifacial silicon heterojunction (SHJ) solar module of three cells in series with total area of 730 cm2. The bifaciality of the solar module has been optimized through modeling in terms of the number of cells, module height and inclination. During outdoor operation in the standard monofacial configuration, the system is able to produce 3.7 gr of H2 h−1m−2 with an irradiation of 1000 W m−2 and a solar-to-hydrogen efficiency (STH) of 11.55%. The same system operating in bifacial mode gives rise to a higher H2 flux and STH efficiency, reaching values of 4.2 gr of H2 h−1m−2 and STH of 13.5%. Such a noticeable difference is achieved through the collection of albedo radiation from the ground by the bifacial PV system. The system has been tested outdoors for more than 55 h, exhibiting very good endurance, with no appreciable change in production and efficiency.
536 _ _ |a 134 - Electrolysis and Hydrogen (POF3-134)
|0 G:(DE-HGF)POF3-134
|c POF3-134
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Müller, Martin
|0 P:(DE-Juel1)129892
|b 1
|u fzj
700 1 _ |a Zwaygardt, Walter
|0 P:(DE-Juel1)129951
|b 2
|u fzj
700 1 _ |a Carmo, Marcelo
|0 P:(DE-Juel1)145276
|b 3
|u fzj
700 1 _ |a Milazzo, R. G.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Zani, P.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Leonardi, M.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Maita, F.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Canino, A.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Foti, M.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Gerardi, C.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Lombardo, S. A.
|0 P:(DE-HGF)0
|b 11
773 _ _ |a 10.1016/j.jpowsour.2020.228619
|g Vol. 473, p. 228619 -
|0 PERI:(DE-600)1491915-1
|p 228619 -
|t Journal of power sources
|v 473
|y 2020
|x 0378-7753
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/875364/files/1-s2.0-S037877532030923X-main.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/875364/files/1-s2.0-S037877532030923X-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:875364
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129892
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129951
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145276
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-134
|2 G:(DE-HGF)POF3-100
|v Electrolysis and Hydrogen
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J POWER SOURCES : 2017
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J POWER SOURCES : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-14-20191129
|k IEK-14
|l Elektrochemische Verfahrenstechnik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-14-20191129
981 _ _ |a I:(DE-Juel1)IET-4-20191129


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21