000875378 001__ 875378
000875378 005__ 20240709081919.0
000875378 037__ $$aFZJ-2020-01989
000875378 1001_ $$0P:(DE-Juel1)180579$$aChen, Yingzhen$$b0$$eCorresponding author$$ufzj
000875378 1112_ $$aElectrochemistry 2020$$cBerlin$$d2020-09-23 - 2020-09-25$$wGermany
000875378 245__ $$aInterfaces between Catalytic Electrodes and Protic Ionic Liquids for the Intermediate-Temperature Polymer Electrolyte Fuel Cell
000875378 260__ $$c2020
000875378 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1589440672_12063
000875378 3367_ $$033$$2EndNote$$aConference Paper
000875378 3367_ $$2BibTeX$$aINPROCEEDINGS
000875378 3367_ $$2DRIVER$$aconferenceObject
000875378 3367_ $$2DataCite$$aOutput Types/Conference Abstract
000875378 3367_ $$2ORCID$$aOTHER
000875378 520__ $$aInterfaces between catalytic electrodes and protic ionic liquids for the intermediate-temperature polymer electrolyte fuel cellsY. Chen, Jülich/DE, C. Rodenbücher, Jülich/DE, J. Giffin, Jülich/DE, K. Wippermann, Jülich/DE, C. Korte, Jülich/DEForschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-14), 52425 Jülich, GermanyWith the environmental concerns and energy issues, the demand for clean and sustain-able energy sources has become one of the most challenging topics in the current cen-tury. Fuel cells have stimulated particular interest, because they can generate electricity with high efficiency using “green hydrogen”. In recent years, polymer electrolyte mem-brane fuel cells (PEMFC) have turned out to be the most viable alternative to combus-tion engines for automotive applications. However, PEMFC with sulfonated fluoropoly-mers, e.g. NAFION®, whose proton conduction relies on the presence of water, limits the operating temperature below 80 °C (ambient pressure). A PEMFC operating at 100–120 °C would be more attractive, owing to a much more simplified system setup for water and heat management. This requires a novel non-aqueous electrolyte.In this study we investigate proton conducting ionic liquids (PIL) as alternative proton-conducting electrolytes for intermediate-temperature PEMFCs. Ionic liquids consist basically of bulky organic cations and anions of superacids. Due to the low lattice energy they are liquids at room temperature. A large variety of combination of cation and anion gives the opportunity to design ionic liquids with desired properties. The structure of the electrical double layer close to the electrode/electrolyte interface is completely different compared to classical aqueous solutions as there are alternating layers of cations and anions. Preceding investigations on PILs with cations of different Brønsted-acidity give rise to the assumption that the proton transfer from the cation to the active centres on the electrode surface is mainly determining the rate of the ORR. [1] As residual water is unavoidable during fuel cell operation even above 100 °C, its concentration and the acidity of the PIL will play an important role.In order to understand the electrochemical kinetics at the electrode-electrolyte inter-face, spectroelectrochemical analyses were carried out by combining cyclovoltammetry and impedance spectroscopy with FT-IR spectroscopy and atomic force microscopy (AFM). First results show that the structure of the electrical double layer and the ionic transport depend on the applied cell potential, the content of water and the temperature. The observed formation of a dense layered structure at the interface can be related to the interplay of Coulomb interaction between the ions and steric effects. The findings provide a better understanding of the electrochemical kinetics of protic ionic liquids at the catalytic surface and give valuable guidance for design and further optimization of ionic liquids for intermediate-temperature PEMFC fuel cells.[1] K. Wippermann, J. Wackerl, W. Lehnert, B. Huber and C. Korte, J. Electrochem. Soc., 2016, 163, F25.
000875378 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000875378 7001_ $$0P:(DE-Juel1)142194$$aRodenbücher, Christian$$b1$$ufzj
000875378 7001_ $$0P:(DE-Juel1)129938$$aGiffin, Jürgen$$b2$$ufzj
000875378 7001_ $$0P:(DE-Juel1)129946$$aWippermann, Klaus$$b3$$ufzj
000875378 7001_ $$0P:(DE-Juel1)140525$$aKorte, Carsten$$b4$$ufzj
000875378 909CO $$ooai:juser.fz-juelich.de:875378$$pVDB
000875378 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180579$$aForschungszentrum Jülich$$b0$$kFZJ
000875378 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)180579$$aRWTH Aachen$$b0$$kRWTH
000875378 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142194$$aForschungszentrum Jülich$$b1$$kFZJ
000875378 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129938$$aForschungszentrum Jülich$$b2$$kFZJ
000875378 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129946$$aForschungszentrum Jülich$$b3$$kFZJ
000875378 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140525$$aForschungszentrum Jülich$$b4$$kFZJ
000875378 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)140525$$aRWTH Aachen$$b4$$kRWTH
000875378 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000875378 9141_ $$y2020
000875378 920__ $$lyes
000875378 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000875378 980__ $$aabstract
000875378 980__ $$aVDB
000875378 980__ $$aI:(DE-Juel1)IEK-14-20191129
000875378 980__ $$aUNRESTRICTED
000875378 981__ $$aI:(DE-Juel1)IET-4-20191129