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Abstract

Complex geometries pose multiple challenges to the field of computational fluid dynamics. Grid generation for intricate 
objects is often difficult and requires accurate and scalable geometrical methods to generate meshes for large-scale com-
putations. Such simulations, furthermore, presume optimized scalability on high-performance computers to solve high-
dimensional physical problems in an adequate time. Accurate boundary treatment for complex shapes is another issue and 
influences parallel load-balance. In addition, large serial geometries prevent efficient computations due to their increased 
memory footprint, which leads to reduced memory availability for computations. In this paper, a framework is presented that 
is able to address the aforementioned problems. Hierarchical Cartesian boundary-refined meshes for complex geometries 
are obtained by a massively parallel grid generator. In this process, the geometry is parallelized for efficient computation. 
Simulations on large-scale meshes are performed by a high-scaling lattice–Boltzmann method using the second-order accurate 
interpolated bounce-back boundary conditions for no-slip walls. The method employs Hilbert decompositioning for parallel 
distribution and is hybrid MPI/OpenMP parallelized. The parallel geometry allows to speed up the pre-processing of the 
solver and massively reduces the local memory footprint. The efficiency of the computational framework, the application 
of which to, e.g., subsonic aerodynamic problems is straightforward, is shown by simulating clearly different flow problems 
such as the flow in the human airways, in gas diffusion layers of fuel cells, and around an airplane landing gear configuration.

Keywords Lattice–Boltzmann methods · High-performance computing · Respiratory flows · Gas diffusion layers · Landing 
gear

1  Introduction and historical review

As computing power continuously increases, more and more 
complex engineering problems are investigated by means of 
computational fluid dynamics (CFD) methods. In research, 
high-performance computing (HPC) systems are commonly 
employed to solve large-scale multi-physics problems in fun-
damental and applied engineering. HPC architectures come 

in various flavors. The trend in HPC is towards heterogene-
ous architectures, which poses new challenges to simulation 
software. The TOP500 list of supercomputers1 reflects this 
trend, e.g., the leading machine SUMMIT (status of 2020) of 
the Oak Ridge National Laboratory, U.S., is equipped with a 
massive amount of GPU accelerators. The adaption of soft-
ware to run efficiently on such systems necessitates porting 
and tuning activities as well as multi-level parallelizations 
and optimized domain decompositioning methods.

A promising numerical method for the efficient simula-
tion of flows are lattice–Boltzmann (LB) methods [3, 27, 
31]. Their parallelization and their compute kernel imple-
mentation is simple, and intricate  geometries can effi-
ciently be treated. They are derived from lattice-gas cellular 
automata (LGCA). First theoretical work in [75] led to an 
application in fluid mechanics, i.e., to the first numerical 
solution of the Navier–Stokes equations via LGCA [20]. 
LGCA, however, suffer from their non-Galilean invariance 

 * Andreas Lintermann 
 A.Lintermann@fz-juelich.de

1 Jülich Supercomputing Centre, Forschungszentrum Jülich 
GmbH, Wilhelm-Johnen-Straße, 52425 Jülich, Germany

2 Jülich Aachen Research Alliance Center for Simulation 
and Data Science (JARA-CSD), Seffenter Weg 23, 
52074 Aachen, Germany

3 Institute of Aerodynamics and Chair of Fluid Mechanics, 
RWTH Aachen University, Wüllnerstr. 5a, 52062 Aachen, 
Germany 1 TOP500 list www.top50 0.org.



746 A. Lintermann, W. Schröder 

1 3

at high REYNOLDS numbers Re leading to statistical noise 
[59, 74]. McNamara and Zanetti [57] solved this problem 
by replacing the individual particle consideration by particle 
probability distribution functions (PPDFs). In [59], the col-
lision matrix [31] is replaced by a single relaxation scheme. 
Higuera et al. [31] were the first to show results with the 
LB method for 2D flows in a channel containing a periodic 
array of obstacles. This is in line with the physical work 
of Bhatnagar–Gross–Krook and led to the numerical BGK 
model. Qian et al. [59] also introduce the DxQy discretiza-
tion model with x space dimensions and y discrete direc-
tions. In [42, 56, 74], the Boltzmann equation is derived 
and by a Chapman–Enskog development the Navier–Stokes 
equations. Based on this model, a lot of novel variants of the 
LB method for different applications were deduced.

The stability of the standard BGK method with a sin-
gle relaxation time (SRT) is non-linear dependent on the 
flow solution and the collision frequency. The viscosity 
� is limited by a stability threshold, i.e., for Re → ∞ the 
viscosity cannot become infinitely small. Moment-based 
methods such as the multiple relaxation time (MRT) [12] 
and the cascaded LB (CLB) [22] methods are in this respect 
advantageous. In the MRT model, the relaxation is per-
formed in moment space, which decouples the conservative 
and non-conservative variables. This leads to an increase 
in accuracy and stability. The CLB method also relaxes in 
moment space. Moments of the fourth order of the velocity 
components are, however, reconstructed from lower order 
moments in a cascade to capture oscillations in high-fre-
quency space. Yet, this requires to use at least a D3Q27 
discretization model. The entropic LB (ELB) method [36] 
increases the stability by an adaption of the relaxation time 
in each LB iteration. For the correction of instabilities, an 
entropy equation such as the Boltzmann entropy function 
or the Tsallis entropy function [5] is employed. The ELB 
model is stable even at high REYNOLDS numbers and more 
efficient than the MRT model [1]. The collision operator in 
the regularized LB (RLB) method [43] is separated into an 
equilibrium and non-equilibrium part. Under application of 
a term for the non-equilibrium stresses, the collision term 
is transformed into a solvable form. The RLB method is not 
as stable as the MRT, CLB, or ELB methods, and the com-
putational costs are, however, similar to the standard BGK 
operator. Recently, the cumulant LB method [23] has been 
developed, which shows a smaller analytical and numerical 
error than the MRT method. The collision operator in this 
model is based on the so-called cumulants. The method is 
especially suited for high REYNOLDS number flows.

For the derivation of the equilibrium distribution func-
tion, a small MACH number Ma approximation is used [27], 
which limits the aforementioned methods to weakly com-
pressible flow. This leads to a decoupling of the energy equa-
tion from the Navier Stokes equations. To satisfy the first 

law of thermodynamics or, in other words, to determine the 
temperature distribution, a multidistribution function (MDF) 
approach [26] is commonly used. Natural convection, i.e., 
a change of the density based on the temperature, can be 
realized by incorporating the Boussinesq approximation into 
the Navier–Stokes equations. The MDF method neglects, 
however, added work via compression and viscous heating at 
moderate MACH numbers. For Ma > 0.3 , either more energy 
states are considered [71] or finite-difference approaches 
[37] are employed. The full Navier–Stokes equations can 
be derived from the discretized equations using discretiza-
tion models with y = 120 or y = 39 [66]. Chen et al. [9] 
present a method based on this approach, which is capable 
of simulating flows at Ma = 2.0.

LB methods are, furthermore, suited for the simulation 
of multi-phase flows. Depending on which thermal equation 
of state (EOS) and maximum density ratio are considered, 
or how fast and accurate a solution is requested, different 
models have been developed. Color-gradient methods [25] 
distinguish between two differently colored fluids, each with 
an own set of PPDFs [60]. Although this method is quite 
accurate, high-density gradients may lead to numerical insta-
bilities. Shan-Chen models [65] generate a phase separation 
by integrating attracting and repelling forces in the vicinity 
of phase interfaces. This, however, leads to spurious cur-
rents. In free-energy models [72], the issue of the non-mono-
tonic thermal EOS is addressed. The EOS is incorporated 
into the pressure tensor of the Navier–Stokes equations. Like 
the color-gradient method, the free-energy methods suffer 
from limiting density ratios. The interface tracking meth-
ods [30] solve for two sets of PPDFs. Macroscopically, the 
Cahn–Hilliard and the Navier–Stokes equations are consid-
ered. Recent advances using interface tracking methods [45] 
allow high-density gradients on the order of O(10

3) and an 
efficient and accurate solution scheme.

In general, all aforementioned LB schemes operate on 
Cartesian meshes, which may lead to an excessive number of 
cells due to the unique grid spacing, e.g., in boundary-layer 
flows. The application of boundary-refined Cartesian meshes 
delivers in such cases only a slight reduction of the compu-
tational effort. Furthermore, the Courant–Friedrichs–Lewy 
(CFL) number is bound to unity. It is hence worth noting 
that there exist several works on non-uniform meshes [13, 
39, 58]. In [58], a finite volume (FV) formulation of the LB 
equation is derived, extending the applicability of LB meth-
ods to irregular meshes. Krämer et al. [39] employ a semi-
Lagrangian propagation step, where the streamed PPDF is 
reconstructed by a finite-element approach. This allows for 
non-unity CFL numbers, higher order spatial discretiza-
tions, and higher time steps. Di Ilio et al. [13] combine the 
standard Cartesian approach with an FV formulation and 
name it the hybrid LB method (HLBM). In this method, two 
meshes, a Cartesian mesh in the far field of a solid object and 



747Lattice–Boltzmann simulations for complex geometries on high-performance computers  

1 3

an unstructured body-fitted FV mesh in the vicinity of the 
object, are combined. In the overlapping region, information 
is exchanged via interpolation. Note that despite the advan-
tages of these irregular mesh methods, they complicate auto-
matic meshing and dynamic solution-adaptive refinement, 
which is why the approach in this paper employs hierarchi-
cal Cartesian meshes. For a good introduction and further 
details on LB simulations, the reader is referred to [3, 27].

The Institute of Aerodynamics and Chair of Fluid 
Mechanics, RWTH Aachen University, develops the frame-
work Zonal Flow Solver (ZFS) [52], which is supported by 
the Jülich Aachen Research Alliance Center for Simulation 
and Data Science (JARA-CSD). This framework features 
a massively parallel Cartesian grid generator, parallelized 
geometries, and, amongst others, different LB methods to 
solve technical and biomedical engineering problems. The 
code is written in C++. In this contribution, the numerical 
methods implemented in ZFS are described and some appli-
cation examples of large-scale simulations from different 
fields are presented as proof of concept. Note that despite the 
theory of the computational kernels is derived from available 
publications, the modularity, meshing, and parallelization 
approaches, also for the geometry, are unique to ZFS. That 
is, the paper aims at delivering details on a production code, 
which is under continuous development and frequently used. 
For a review of other LB simulation codes in the context 
of large-scale computations on HPC systems, the reader is 
referred to [70].

The paper is structured as follows. Section 2 discusses the 
numerical methods and corresponding performance aspects. 
Subsequently, Sect. 3 presents the application examples, i.e., 
flow computations in the human respiratory tract, in gas dif-
fusion layers (GDLs) of fuel cells, and around a airplane 
landing gear configuration. In Sect. 4 a summary and a con-
clusion are given. Finally, in Sect. 5, other fields of applica-
tion and an outlook are presented.

2  Numerical methods

The simulation of flows necessitates to follow a particular 
workflow path. First, the computational mesh corresponding 
to a flow problem and an associated geometry is generated. 
The mesh and a parallelized geometry are input to the multi-
physics framework ZFS, which uses its solvers to compute 
an approximate solution of the Navier–Stokes equations. 
The following Sect. 2.1 describes the method to generate 
the mesh and a parallelized geometry. This is followed by 
a description of the LB solver in Sect. 2.2, which is used 
for the applications presented in Sect. 3. Some performance 
aspects of the simulation code are presented in Sect. 2.3. A 
workflow chart for the LB method is also shown in Fig. 1.

2.1  Mesh generation

The mesh generator [53] is part of the framework ZFS and 
generates hierarchical Cartesian meshes. It is independent 
of the method employed for the simulation. It fully works 
in parallel using the Message Passing Interface (MPI) and 
OpenMP, and is able to construct meshes in a short amount 
of time on a large number of processes.

Parallel meshing begins with an I/O of the geometry, 
which is usually given in Standard Tessellation Language 
(STL). Each process places an initial cube around this 
geometry and starts to continuously subdivide the cube into 
smaller cubes. This constitutes an octree hierarchy with par-
ent–child and neighborhood relations, and cells living on dif-
ferent levels l in the tree. The subdivision is performed until 
a level l

�
 is reached. In each iteration, cells that are outside 

the geometry are removed by a mixture of intersection tests 
and flooding algorithms. At l

�
 , all levels l < l

�
 are removed 

and the remaining cells are decomposed by a Hilbert space-
filling curve [61]. Each MPI rank keeps only those cells 
which it is responsible for and creates rank-neighborhood 
information based on the local domain boundary cells, the 

Fig. 1  Workflow overview of ZFS using the LB solver. At time step 
t = t

∗ , some event is triggered, i.e., checkpointing, solution output, or 
in-situ analysis is performed
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so-called window cells. Continuous subdivision is then per-
formed on the remainder of the cells up to a level l� > l� . 
At this stage, the mesh is uniformly refined. The subsequent 
step creates locally refined meshes. The algorithm can refine 
regions, where higher resolutions are required based on user-
defined geometrical objects or the distance of the boundary. 
For the former method, cells inside the defined geometrical 
shapes are refined, while for the latter method, the distance 
from the wall is measured and used as in indicator for refine-
ment. Global cell neighborhood is restored using the win-
dow and the corresponding halo cells, which are created as 
copy of each window cell on a neighboring MPI rank. From 
the decomposition on l

�
 , a list of cells is defined, which is 

used in a preprocessing step to the solver for the weighted 
decomposition of the mesh. This list is also utilized for the 
parallelization of the geometry, i.e., for each cell in this list, 
the number of triangles and the corresponding triangle infor-
mation is gathered and written to disk in parallel using either 
parallel NetCDF [47] or HDF5 [18]. These parallel libraries 
are in a final step also used to write the mesh to disk. For 
more details on the parallel mesh generator, the interested 
reader is referred to [49, 53].

2.2  Lattice–Boltzmann solver

ZFS implements different LB methods, i.e., the standard 
SRT, MRT, RLB, and CLB models. For spatial discretiza-
tion, all these models employ the parallel octree mesh placed 
into memory via parallel I/O. The space is furthermore 
discretized using the DxQy schemata from [59]. Figure 2 
shows the various discretization schemata implemented in 
ZFS. The inner box of Fig. 1 shows the basic algorithm of 
the LB methods, i.e., a collision step, which represents, in 

a statistical sense, the change of PPDFs due to cell-local 
collisions, is usually followed by a propagation step, which 
pushes the new PPDFs to the neighboring cells. Since the 
code is executed in parallel, window cells need to copy their 
information to the neighboring MPI ranks via inter-process 
communication (IPC) to their corresponding halo cells such 
that a valid propagation can be executed. Depending on the 
kind of boundary condition (BC), the BC is either executed 
right after collision and before IPC, or after propagation. 
After that, the iteration step t is advanced, and if t = t

∗ , a 
special event is executed. Such events can be checkpointing 
actions, solution I/O, in-situ analysis, or simply finishing the 
simulation at a target time step t∗ = t

end
.

The most frequently used LB models are the SRT with 
the D3Q27 scheme. The MRT, RLB, and CLB models 
come, however, with advanced features with respect to the 
range of applications and stability. The following describes 
these methods independent of the DxQy schemata. Fur-
thermore, a method for large-eddy simulations (LES), the 
employed mesh refinement technique, and boundary con-
ditions are described. Note that all methods have previ-
ously been validated in [15, 19, 50]. That is, in [15], the 
SRT method with mesh refinement is validated by simulat-
ing the flow past a circular cylinder at REYNOLDS numbers 
Re = 40 and Re = 100 , and past a sphere at 100 ≤ Re ≤ 300 
and at 3700 ≤ Re ≤ 10, 000 . For the latter case, the REYN-

OLDS number is on the same order as that of the landing 
gear configuration presented in Sect. 3.3. A detailed analy-
sis of the averaged drag coefficient C̄

d
 , the mean base pres-

sure coefficient C̄pb , the mean non-dimensional length of 
the recirculation region L̄

r
∕D , the mean separation angle 

�̄
s
 , the STROUHAL number St for the large-scale vortex 

shedding, the mean wall-pressure coefficient C̄p , and the 

Fig. 2  DxQy LB discretiza-
tion schemata in two and three 
dimensions, i.e., for the D2Q9, 
D3Q15, D3Q19, and D3Q27 
LB models

(a) (b)
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mean skin-friction �̄ is given. The values and distribu-
tions are in good agreement with the other results from 
the literature. In [19], the MRT and the CLB methods are 
validated for the D3Q19 and D3Q27 models by simula-
tions of plane Poiseuille flow at Re = 200 , flow in a three-
dimensional lid-driven cavity at yaw at Re = 700 , and of 
a turbulent channel flow at Re

�
= 200 . Finally, in [50], the 

thermal MDF LB approach is validated by analyzing a 
boundary-layer flow over a heated flat plate at Re = 10, 000 
and a PRANDTL number of Pr = 1.0.

2.2.1  SRT method

The  SRT met hod  [59 ]  equa te s  t he  PPDFs 
fi(r + �r, t + �t), i ∈ {1.… , y} with a single relaxation 
parameter �

F
 by:

The parameter �
F
 is a function of the inverse of the viscos-

ity � , that is:

In Eq. (1), r represents the spatial location, �r is the grid 
distance, t is the time, �t is the time increment, and f

eq

i
 is 

the discretized Maxwellian equilibrium distribution func-
tion given by:

where � is the density, tp is a discretization scheme-depend-
ent factor, see Appendix A, c

s
 is the speed of sound, v

a,b
 and 

�
i,a,b

 are fluid velocity and molecular velocity components, 
and �

ab
 is the Kronecker delta with indices a, b ∈ {1,… , x} . 

The algorithm usually performs the collision and propaga-
tion steps in separate steps, i.e., an explicit scheme, alternat-
ing between collision and propagation operations, is used:

where the PPDFs with a <̂> represent the post-collision 
PPDFs. The macroscopic variables can be obtained from the 
moments of the PPDFs, see, e.g., Hänel [27]:

(1)fi(r + �r, t + �t) = fi(r, t) + �F

(

f
eq

i
(r, t) − fi(r, t)

)

.

(2)�
F
=

c
2

s

� + �tc2

s
∕2

.

(3)
f

eq

i
(r, t) = �tp

[

1 +
va�i,a

c2
s

+
vavb

2c2
s

⋅

(

�i,a�i,b

c2
s

− �ab

)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�

,

(4)f̂i(r, t) = fi(r, t) + �F

(

f
eq

i
(r, t) − fi(r, t)

)

(5)fi(r + �r, t + �t) = f̂i(r, t),

(6)� =
∑

i

fi(r, t)

The temperature distribution can be simulated by an MDF 
approach [26], i.e., by additionally solving:

The parameter �
T
 depends on the heat conduction coefficient 

� of the fluid:

where � is given by the PRANDTL number Pr = �∕� and 
g

eq

i
(r, t) equates to:

with T representing the temperature. The macroscopic tem-
perature variable is given by:

The advantages of the SRT method are that the implementa-
tion is straightforward for all DxQy models and that the col-
lision kernel is well suited for HPC simulations. The REYN-

OLDS number range and its quasi-incompressibility ansatz in 
the derivation of the equilibrium distribution function (see 
[27]) are, however, due to stability limitations and fixed col-
lision frequencies �

F
 and �

T
 restricted to rather small MACH 

and REYNOLDS numbers.

2.2.2  MRT method

Unlike the SRT method, the MRT method [12] relaxes in 
momentum space and introduces individual collision fre-
quencies for the various moments resulting in higher numer-
ical stabilities [42]. Various physical processes in fluids 
such as viscous transport can be approximately described 
by mode coupling. The modes are directly related to the 
moments of the PPDFs. Since the collision frequencies of 
the moments are directly related to various transport coef-
ficients, each mode can be controlled independently. This 
overcomes the fixed PRANDTL number issue that the SRT 
models suffer from. The MRT equation can be written in 
vector notation and is given by:

(7)�va =
∑

i

�i,afi(r, t)

(8)�(e + v2

a
) =

1

2

∑

i

�2

i,a
fi(r, t)

(9)
�vavb + p�ab − �ab
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

�ab

=
∑

i

�i,a�i,bfi(r, t).

(10)gi(r + �r, t + �t) = gi(r, t) + �T

(

g
eq

i
(r, t) − gi(r, t)

)

.

(11)�
T
=

c
2

s

� + �tc2
s
∕2

,

(12)g
eq

i
(r, t) = Ttp� ,

(13)T =

∑

i

gi.
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with � being the vector of the PPDFs and moment and relax-
ation matrices � and �

MRT
 , and vectors �eq and � . The 

relaxation matrix �
MRT

 is a diagonal matrix holding the vari-
ous collision frequencies. Example vectors and matrices for 
the D2Q9 MRT model are given in Appendix B.

Note that setting the diagonal elements of �
MRT

 to �
F
 

yields the SRT method. The calculations of the macroscopic 
variables and the propagation are performed analogue to the 
SRT method, see Eqs. (6)–(8). That is, the MRT method only 
differs from the SRT method by the collision step. A stabil-
ity analysis that considers the eigenvalues of the spectral 
matrix of the Fourier transform of Eqs. (1) and (14) under-
lines the stability advantages of the MRT method over the 
SRT method [42]. That is, the MRT method is advantageous 
for higher REYNOLDS number flows. Computationally, it is 
due to the required matrix operations more expensive than 
the SRT method. On modern supercomputers with decent 
vector units, the performance difference can, however, be 
considered negligible if the compiler is able to efficiently 
vectorize the code.

2.2.3  CLB method

Similarly to the MRT method, the CLB method [22] also 
relaxes in moment space, which reconstructs, however, 
the high-order non-hydrodynamic moments of the discrete 
velocity set up to the fourth order in a cascade from lower 
order moments. Short wave-length oscillations at higher 
REYNOLDS numbers are captured by these higher order 
moments yielding a stable numerical scheme. The advance-
ment of the state vector of the PPDFs � is given by [22]:

where �
CLB

= (�1,… ,�y) is a orthogonal transforma-
tion matrix that transforms the configuration space to the 
moment space to obtain Galilean invariance, e.g., the first 
hydrodynamic macroscopic quantities can be obtained by:

and � is the moment vector. The matrix �
CLB

 and the vector 
� are exemplarily given in Appendix C for the D2Q9 model.

Concerning the limitations of the SRT method for � → 0 , 
or in other words Re → ∞ , the CLB method allows for 
higher numerical stability by enabling a decrease of the 
viscosity by many orders of magnitude as compared to the 
original model [22].

(14)
� (r + �r, t + �t)

= � (r, t) −�
−1
�

MRT
⋅

[

�(r, t) −�
eq(r, t)

]

,

(15)� (r + �r, t + �t) = �(r, t) +�
CLB

⋅ �

(16)(�, �v1,… , �v
x
)T = � ⋅ (�1,… ,�

x+1),

2.2.4  RLB method

Using the SRT method, the symmetry properties of the 
PPDFs are not necessarily fulfilled to reach the hydrody-
namic limit. Therefore, Latt and Chopard [43] introduced the 
RLB method, which introduces a pre-collision regularization 
step to restore this symmetry. This regularization leads to 
enhanced stability and accuracy in the hydrodynamic regime 
of the employed scheme. The Chapman–Enskog expan-
sion expands the PPDFs in powers of the KNUDSEN number 
� = lf∕L , where lf  is the mean free path and L a characteristic 
length. This leads to:

and f eq(r, t) = f
(0)

i
(r, t) at zeroth order. The non-equilibrium 

parts are then given by:

The non-equilibrium part of the PPDFs can furthermore be 
expressed as [11]:

Inserting this into the non-equilibrium momentum flux ten-
sor [cf. Eq. (9)] leads to:

Combining Eqs. (19) and (22) yields the regularization term:

which can be used in f
reg

i
(r, t) = f

eq

i
(r, t) + f

(1)

i
(r, t) to set 

f̂i(r, t) = f
reg

i
(r, t) prior to the next collision.

2.2.5  Large-eddy simulations

LES computations employ the Smagorinsky sub-grid scale 
(SGS) model for LB methods [33, 68]. Spatial filtering is 
performed using coarsened meshes. To account for the fil-
tered scales, the turbulent viscosity �

t
 is added to the colli-

sion frequency (see Eq. (2)):

(17)fi(r, t) = f
(0)

i
(r, t) + �f

(1)

i
(r, t) + �

2f
(2)

i
(r, t) +… ,

(18)f
neq

i
(r, t) = fi(r, t) − f

eq

i
(r, t).

(19)f
neq

i
(r, t) ≈ f

(1)

i
(r, t) = −

�t

�Fc2
s

(

�i,a�i,b − c2

s
�ab

)

⋅

��vb

�xa

.

(20)�
neq

ab
=�ab −

∑

i

�i,a�i,bf
eq

i
(r, t)

(21)≈
∑

i

�i,a�i,bf
(1)

i
(r, t)

(22)= −
c

2

s

�
F
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with Smagorinsky’s constant C
s
 . The turbulent viscosity is 

given by:

where S̄
ab

 is the filtered strain tensor, which can be obtained 
by:

2.2.6  Grid re�nement

Simulations on multiple octree hierarchy levels are per-
formed using the method of Dupuis and Chopard [14], i.e., 
by executing restriction and prolongation operations on suc-
ceeding levels l

�
 and l

�+1
 in the corresponding overlapping 

regions. The method splits missing interpolated incoming 
PPDFs f̃i(r, t) from other levels into equilibrium and non-
equilibrium parts, see Eqs. (18) and (19). The relation of the 
non-equilibrium PPDFs on the fine and the coarse level can 
then be expressed as:

with �t
�+1

∕�t
�
= �r

�+1
∕�r

�
 . For the transformations from 

fine to coarse and coarse to fine, this yields:

Keeping the viscosity constant across levels leads to the 
transformation factors �

�,�+1 , which depend on the ratios of 
the grid distances and the relaxation times on l

�
 and l

�+1
 . The 

same scheme can be applied to the MDF approach, however, 
using the same heat conduction coefficient on both levels 
and �

T ,�
 and �

T ,�+1.

(24)�
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F
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s
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2.2.7  Boundary conditions

Various boundary conditions can be applied to simulate a 
large spectrum of numerical setups. In more detail, multiple 
von Neumann and Dirichlet conditions for in- and outflows, 
and periodic boundary conditions are implemented in ZFS. 
This also includes sponge layered, Saint-Venant/Wantzel, 
and pressure boundary conditions [51]. That is, for Dirichlet 
conditions, e.g., for the prescription of a velocity profile at 
an inlet or a pressure at the outlet, Eq. (3) is equated for a 
given velocity or density. An adaptive pressure-based outlet 
condition adapts according to the local REYNOLDS number. 
Such a boundary condition is frequently used at an outlet in 
combination with a Saint-Venant/Wantzel at an inlet in res-
piratory flow simulations to imitate the pressure drop caused 
by the expansion of the diaphragm; see Sect. 3.1. A von 
Neumann condition is fulfilled by extrapolating from inter-
polated values, e.g., velocity or density, of the inlet-/outlet-
nearest neighbor cells. The Saint-Venant/Wantzel condition 
extrapolates the momentum. No-slip wall boundary condi-
tions are at least of second-order accuracy. Among the most 
frequently used wall boundary conditions is the interpolated 
bounce-back method from Bouzidi et al. [6], which measures 
for cells intersecting the geometry the distance q from the 
cell center to the wall and uses this information to interpo-
late the bounced-back PPDF. The interpolation scheme is 
chosen based on q < 0.5 ⋅ �r and 0.5 ⋅ �r ≤ q ≤ �r . Further-
more, schemes from Ginzburg and D’Humières [24] and Yu 
et al. [76] are implemented. In the former, a multi-reflection 
boundary condition, which employs PPDFs at three nodes 
to find the unknown PPDFs at the boundary condition after 
a bounce-back, is proposed. In the latter, a double interpo-
lated bounce-back using only a single equation for all values 
of q is applied. This boundary condition finds a PPDF at a 
location between the two or three wall-nearest nodes, which 
during the bounce-back will exactly stream to the wall. Sub-
sequently, it performs the bounce-back and then interpolates 
the missing PPDF based on the PPDF at the wall.

2.3  Performance analysis

The scalability of the code is tested on two HPC systems. 
The CRAY HAZEL HEN system is located at the High-
Performance Computing Center (HLRS) Stuttgart, Germany. 
The system consists of 7712 dual socket nodes containing 
each 2 Intel Haswell E5-2680v3 CPUs, each with 12 cores 
clocked at 2.5 GHz. The system has a peak performance of 
7.4PFlops for 185, 088 cores. The nodes contain 128 GB of 
RAM. Parallel I/O is implemented via a Lustre File System 
(LFS), see [77]. The IBM BlueGene/Q system JUQUEEN 
[69] is located at the Jülich Supercomputing Centre (JSC), 
Forschungszentrum Jülich, Germany, and consists of 28,672 
nodes containing IBM PowerPC A2 CPUs at 1.6 GHz, 16 
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cores, and 16 GB of RAM per node. The overall peak per-
formance is 5.9PFlops. Due to its four-way SMT hardware 
threaded floating point units, it is capable of running a maxi-
mum number of 4 OpenMP threads per core. The JUQUEEN 
system uses the IBM LoadLeveler as job scheduler and has 
a 5D Torus network with a 40 GB/s bandwidth.

Figure 3a shows the performance of the mesh generation 
on the JUQUEEN system for two cases with ≈ 9.82 ⋅ 10

9 
and ≈ 78.54 ⋅ 109 cells. The domains are cubic and periodic 
in all Cartesian directions. Both meshes have a base level 
of l

�
= 7 . The smaller mesh is refined up to l� = 11 and the 

finer mesh up to l� = 12 . From Fig. 3a, it can be seen that 
the mesh generation on for the smaller case scales well up 
to 2048 nodes. Defining the ratio of the expected run time 
under continuous bisection of the first run time on the lowest 

number of nodes and the actual measured time for the indi-
vidual node counts as computational efficiency � in percent, 
a value of � = 92.06% is achieved on 2048 nodes. The per-
formance increase drops to � = 46.01% on 8192 nodes. A 
slightly superlinear scaling behavior up to 16,384 nodes is 
visible for the finer case, where � = 106.0% is reached. It 
should be noted that despite the scalability drops for the 
smaller case for higher node counts, the meshing process 
only requires 27.63s and 44.94s for the small and fine cases 
on 8192 and 16,384 nodes.

Figure 3b shows the results of a strong scaling experi-
ment on both systems HAZEL HEN and JUQUEEN 
using the SRT method on a cubic domain with periodic 
boundary conditions in all directions. The computa-
tional mesh is uniformly refined, has levels from l

�
= 8 

to l� = 10 , and consists of ≈ 1.225 ⋅ 109 cells. The analy-
ses are performed using n

H
= 16,… , 512 compute nodes 

on HAZEL HEN, each with 24 MPI ranks per node, and 
n

J
= 64,… , 16, 384 on JUQUEEN using 16 MPI ranks per 

node. The simulations are advanced for t = 100 iterations. 
Obviously, the computation shows a very good scalabil-
ity up to 512 nodes on HAZEL HEN with efficiencies of 
� = {84.15%, 77.1%, 69.46%} on 128, 256, and 512 nodes. 
On JUQUEEN, the code scales up to 16,384 nodes and has 
efficiencies of � = {81.06%, 70.4%, 41.26%} on 4096, 8192, 
and 16,384 nodes.

To reduce the memory footprint of simulations and to 
accelerate the preprocessing performance of simulations, 
parallelized geometries are employed. Figure 4 shows the 
memory saving factors and preprocessing accelerator fac-
tors employing parallelized geometries in contrast to using 
serial geometries. The results are obtained for the simulation 

(a)

(b)

Fig. 3  Strong scalability performance results of the massively par-
allel grid generator on JUQUEEN and the SRT LB method on the 
JUQUEEN and HAZEL HEN systems

Fig. 4  Memory saving factor (left ordinate) and preprocessing accel-
eration factor (right ordinate) for computations on increasing node 
counts using parallelized geometries related to resources allocated on 
512 JUQUEEN nodes using a serial geometry
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of the flow in a respiratory tract using a mesh consisting 
of 266.5 ⋅ 106 cells with levels l

�
= 9 , l� = 10 , and l

�
= 12 . 

The corresponding geometry consists of 7 ⋅ 10
6 triangles and 

consumes 1239MB in serial. The memory graph is based on 
the estimate that a geometry allocates twice as much space 
under a doubling of the number of nodes. The accelera-
tion of the preprocessing bases on a comparison to a test 
run using a serial geometry on 8192 nodes. From Fig. 4, 
it is obvious that using a parallelized geometry massively 
reduces allocated space, i.e., from 512 up to 8192 nodes 
saving factors of 1204 and 13,306 are obtained. The preproc-
essing, which is for the serial geometry dominated by I/O, 
can be decreased by factors of 50 and 27.5 for 512 and 8192 
nodes. That is, on one hand, parallelized geometries allow 
to have more memory available for the computation and, on 
the other hand, reduce the effort in preparing a simulation.

For further ideas to accelerate LB codes, e.g., for exascale 
computing or to port to GPUs, the reader is referred to [4, 
70, 73].

3  Applications

To show the applicability of the methods presented in Sect. 2 
for complex flows, three simulation examples are presented 
in the following. Section 3.1 discusses some results for the 
flow in a complex geometry such as the human respiratory 
system. Subsequently, the applicability for technical appli-
cations, i.e., for the simulation of the flow in porous media 
such as in GDLs of fuel cells and around an airplane landing 
gear configuration, are shown in Sects. 3.2 and 3.3.

3.1  Flow in the human respiratory tract

The flow in the human respiratory tract is quasi-incom-
pressible and is mainly in the low REYNOLDS number and 
low MACH number regime, i.e., the D3Q27 SRT LB method 
is well suited for the simulation of such flows. Considering 
respiration, it is important, from a fluid mechanics point of 
view, to understand the functionalities of the human nasal 
cavity and what pathologies, or in fluid mechanics context, 
what flow phenomena might cause their reduction [51]. 
That is, the pressure loss along the airway can be used as 
an indication for strenuous respiration. A local considera-
tion might even lead to the identification of anatomical 
structures causing diminished respiration. The distribu-
tion of the wall-shear stress can be used to find potential 
locations of inflammations, while the temperature distri-
bution and the heating capability classify a nasal cavity to 
be protective for the lungs. The epiglottis and the larynx 
might lead to jets at inspiration [49]. Furthermore, particle 

deposition behavior in the nose as well as in the lung is of 
high interest, i.e., where and why, e.g., fine dust particles 
or Diesel aerosols deposit in the airway [55]. The human 
organism is a highly complex structure and simulations 
in the human respiratory tract are quite a challenge for 
today’s simulation algorithms. ZFS, however, is capable 
of simulating such flows with LB methods on octree-based 
meshes. Especially large geometries that may be the output 
of algorithms extracting surfaces from computer tomog-
raphy data [54] might become large in size and neces-
sitate a geometrical parallelization approach as presented 
in Sects. 2.1 and 2.3.

Figure 5 shows the results of a simulation embedded in 
the original computer tomography data set that was com-
puted on the JUQUEEN system. The computational mesh 
consists of 266.5 ⋅ 106 cells and has levels l

�
= 9 , l� = 10 , 

and l
�
= 12 , cf. Sect. 2.3. The REYNOLDS number, which 

is based on the hydraulic diameter of the trachea D
T
 , the 

kinematic viscosity of air, and the velocity corresponding 
to a volume flux of 360ml/s is Re = 1, 515 . The flow in the 
nasal cavity is primarily in the laminar regime. Depending 
on the local REYNOLDS number, i.e., the local shape of the 
anatomy and the respiration velocity, the flow can, how-
ever, become transitional [51]. Further downstream, the 
epiglottis and the larynx are responsible for the formation 
of a jet. The magnification in Fig. 5 shows that the flow 
becomes transitional in this region before it turns lami-
nar again in the trachea. For visualizing unsteady vortical 
structures, the �-criterion [10] defined by

has been evaluated in the magnification. It is based on the 
Q-criterion [34]:

where

are the strain and the vorticity tensor, � = (v1, v2, v3)
T is the 

velocity vector, and |⋅| denotes the Frobenius norm.
Quantitative results are depicted in Fig. 6. As it is in 

many cases the nasal cavity which determines the respira-
tory capability, the total pressure loss from the nostrils to 
the pharynx, i.e.,

(30)� =

(

Q

3

)3

+

[

det (∇⊗ �)

2

]2

> 0

(31)Q =

1

2
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(32)S =
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2
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is juxtaposed to results in [51] in Fig. 6a. That is, the pres-
sure loss of the nasal cavities N  with indices 1,… , 3 , is 
compared to the current case with index 4 for the left l and 
right r nasal cavity. In Eq. (34), the quantities x1 ∈ {l, r} and 
x

2
 represent the locations of the left and right nostrils and the 

pharynx location (see Fig. 5). The static pressure p̃
s
 and the 

dynamic pressure p̃d are averaged over their corresponding 
cross-sectional areas. Note that to allow for a comparison, 
the total pressure has been normalized according to [51], 
that is:

(34)

�p̂t,x1
=

⎛
⎜
⎜
⎜
⎜
⎝

p̃s(x1) +
�̃(x1)

2
⋅ |�̃(x1)|

2

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
p̃d(x1)

⎞
⎟
⎟
⎟
⎟
⎠

−

⎛
⎜
⎜
⎜
⎜
⎝

p̃s(x2) +
�̃(x2)

2
⋅ |�̃(x2)|

2

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
p̃d(x2)

⎞
⎟
⎟
⎟
⎟
⎠

,

Case N
1
 is considered a healthy cavity, N

2
 a pathological 

case with swollen turbinates and a bend septum, and N
3
 is a 

case which underwent a septoplastic surgery. Obviously, the 
respiratory capability of case N

4
 is below that of the healthy 

and even the pathological case. It can be seen that strenuous 
respiration is present in both the left and right nasal cavity. It 
should, however, be mentioned that for N1,…,3 a volume flux 
of 250 ml/s was assumed, which explains the comparative 
increased pressure loss for case N

4
.

The laminarization process along the airway is ana-
lyzed by considering the turbulent kinetic energy 
k = 1∕2 ⋅ (v′2

1
+ v

′2
2
+ v

′2
3
) with temporally averaged non-

dimensional fluctuating squared quantities v′2
a

 . It is sampled 
along the geometrical centerline of the anatomy from the 
pharynx region to the end of the trachea. The results along 
the arc length of the curve are shown in Fig. 6b. It can be 
seen that the flow is already quite energetic when reaching 

(35)
�pt,x1

=
1

Ma2

[(
�̃(x1) − �̃(x2)

)
+

3

2

(
�̃(x1) ⋅ |�(x1)|2

−�̃(x2) ⋅ |�(x2)|2
)]

.

Fig. 5  Flow in the human 
respiratory tract. The cross sec-
tion is colored by the v

1
 velocity 

component of the flow. The 
magnification shows the larynx 
region. Emerging vortical struc-
tures are visualized by contours 
of the �-criterion. The contours 
are colored by the vorticity
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the epiglottis, cf. Fig. 5. The corresponding restriction helps 
laminarizing the flow before the turbulent kinetic energy 
increases in the epiglottis jet region. Subsequently, the lar-
ynx constriction supports again laminarization and the lar-
ynx jet again increases the energy. In the trachea, the energy 
level stays at a low and almost constant level before the flow 
finally enters the lung.

3.2  Flow in gas di�usion layers of fuel cells

In fuel cells, it is important to have a uniform supply of oxy-
gen and hydrogen in the reactive layer to reliably produce 
electricity. Therefore, GDLs [21, 41] are placed between the 

gas supply channels and the reactive layer. Such GDLs con-
sist of porous material composed of dense arrays of carbon 
fibers, sometimes treated with hydrophobic substances to 
allow for enhanced water droplet transport across the lay-
ers. The optimal structure to homogenize the flow is, how-
ever, difficult to find, which is why numerical simulations 
are employed to understand the fundamental aspects of gas 
transport across the layers. The following simulations make 
use of the LB method with the SRT D3Q27 model using 
parallelized geometries.

Figure 7 shows the simulation setup, which covers 27 
GDLs embedded in a 1mm

3 cube. For the inlet, a uniform 
velocity profile is prescribed via a Dirichlet BC and the 

Fig. 6  Analysis of the flow in 
the respiratory tract by compar-
ing the pressure loss in the nasal 
cavity to literature values and by 
considering the turbulent kinetic 
energy along a centerline of the 
lower airway

(a)

(b)
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density is extrapolated using a von Neumann BC. In con-
trast, the outlet extrapolates the velocity and the density 
is prescribed. At the outer wall, a slip condition is used 
and the no-slip wall BC for at the fiber surfaces is realized 
via the interpolated bounce-back approach from [6]. The 
REYNOLDS number, which is based on the fiber diameter 
of D = 7.2�m , the kinematic viscosity of hydrogen, and a 
velocity v

G
= 1.8 ⋅ 10

−3
m∕s , is Re

G
= 6.47 ⋅ 10−5 . The com-

putational mesh consists of hierarchy levels l
�
= 7 , l� = 8 , 

and l
�
= 11 and of 2.032 ⋅ 10

9 cells. Figure 8 shows some 

results of the simulation, i.e., the velocity magnitude of 
the gas flow across the GDL is depicted via distributions 
in cross sections in the center of the GDL (horizontal and 
vertical) and right downstream of the GDL. The results 
match the small REYNOLDS number, i.e., the flow is domi-
nated by diffusive effects. This is also corroborated by 
the smeared velocity distribution in the cross section right 
downstream of the GDL.

The simulations were performed on the JURECA system 
[40] at JSC Jülich. The JURECA supercomputer consists of 

Fig. 7  Geometry and computational mesh of the GDL simulation case. The flow in a total of 27 layers is simulated. The computational mesh 
consists of hierarchy levels l

�
= 7 , l� = 8 , and l

�
= 11 and of 2.032 ⋅ 10

9 cells
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1872 compute nodes, each equipped with a dual-socket sys-
tem consisting of two Intel Xeon E5-2680 v3 Haswell CPUs. 
The CPUs are clocked at 2.5 GHz and have 12 cores each. 
That is, the whole system consists of 44,928 cores. 1605 
compute nodes are equipped with 128 GB, 128 with 256 GB, 
and 64 with 512 GB DDR4 memory clocked at 2133 MHz. 
75 of the compute nodes are furthermore equipped with two 
NVIDIA K80 GPUs each. Additionally, the JURECA has 
a booster module with 1640 compute nodes with one Intel 
Xeon Phi 7250-F Knights Landing CPUs (KNL) per node. 
Each KNL has 68 cores clocked at 1.4 GHz and is equipped 
with 96 GB memory plus 16 GB MCDRAM high-bandwidth 
memory. Altogether, the booster module has 111,520 CPU 
cores. The overall CPU, GPU, and KNL peak performances 
of JURECA are 1.8, 0.44, and 5 Petaflop.

3.3  Flow around an airplane landing gear 
con�guration

To show the applicability of the LB method to subsonic 
aerodynamic problems, simulations are performed on the 
JURECA system at JSC for the flow around a front airplane 

landing gear configuration2 as shown in Fig. 9a. The landing 
gear can be considered typical for vertical take-off landing 
(VTOL) jet airplanes with double front gear wheels. The 
MRT method described in Sect. 2.2.2 with the D3Q27 dis-
cretization scheme is used. The REYNOLDS number of this 
problem is Re = v∞ ⋅ H∕� = 0.5 ⋅ 106 . It is based on the 
freestream velocity v∞ = 22.725m∕s , the landing gear height 
H = 1.20m (see label in Fig. 9a), and the viscosity of air 
at a temperature of T = 267.039K of � = 15.15 ⋅ 10−6

m
2∕s . 

The REYNOLDS number based on the diameter of the main 
hydraulic damper d = 0.062m is Re

d
= 25, 800 . Although 

the velocity and, hence, the REYNOLDS number are quite low 
compared to real inflight conditions, it represents a charac-
teristic REYNOLDS number in the transition phase from verti-
cal ascent to accelerated horizontal flight. Figure 9b shows 

Fig. 8  Simulation results of the 
GDL simulation. The different 
cross-sections are colored by the 
velocity magnitude. Cross-sec-
tion locations from left to right: 
vertical in the center of the 
GDL; horizontal in the center of 
the GDL; directly downstream 
of the GDL

2 The STL of the landing gear has been downloaded from https ://
grabc ad.com/libra ry/nose-landi ng-gear-10 and has been generated by 
GrabCAD user jissi. All content submitted by the Contributors To 
GrabCAD is for non-commercial use only, unless otherwise agreed in 
writing with the Contributor.
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the computational mesh of the simulation which is uniformly 
refined up to a base level l� = l� = 7 . The mesh is further-
more boundary-refined in the vicinity of the gear and patch-
refined in the wake of the gear up to level l

�
= 11 . The inset 

of Fig. 9b shows a magnification of the computational mesh 
in the vicinity of the top airplane mount joint. The mesh 
has a total number of cells of 191.5 ⋅ 106 . On level l

�
 , the 

resolution is at �r = 1.479mm . To show that this resolution 
is sufficient, the non-dimensional wall distance y+ is calcu-
lated on a temporally averaged simulation data set. The mean 
velocity components v̄

a
 and the mean density �̄ are obtained 

by averaging the solution after �
s
= 300 ⋅ 10

3 LB iterations 
for another �̄ = 200 ⋅ 10

3 LB iterations. The non-dimensional 
wall distance is given by:

where v∗ =
√

�
w
∕� is the friction velocity with wall-shear 

stress �
w
= �(�v∥∕�r

w
) , and r

w
 , � , and v∥ are the coordinate 

normal to the wall, the dynamic viscosity, and the wall-
tangential velocity component. The minimal distance �(i) 
between field data points i and the landing gear geometry 
employs the signed distance calculation method by Baer-
entzen and Aanaes [2]. The wall-shear stress is linearly 
approximated by �

w
(i) ≈ �[v∥∕�(i)] . Together with Eq. (36), 

this leads to:

Figure 11a shows contours of �(i) colored by y+(i) . The 
maximum y+ that is found in the wall-nearest cells, i.e., at a 
maximum distance of �r∕2 on level l

�
 is max{y+(i)} = 4.086 . 

Although max{y+(i)} > 1 , the majority of the cells has a 
value of y+(i) ≤ 1 . Furthermore, since the flow is mainly 
shear-driven, the resolution of the computational mesh 
can be considered sufficient. The corresponding contour at 
� = �r∕2 , colored by y+ , is shown in Fig. 11b. Obviously, 
the maximum y+ is found on the left and right of the stag-
nation lines on the main and minor dampers, the hydraulic 
dampers, the wheels, and on top and on the bottom of the 
wheels.

Figure 10a shows the flow in a cross section parallel to the 
main flow direction. The cross section is colored by the veloc-
ity magnitude. Obviously, the complex geometry in combina-
tion with the REYNOLDS number leads to a transition of undis-
turbed flow upstream of the landing gear to highly vortical 
structures in the wake region. This is also visible in Fig. 10b, 
which shows contours of the �-criterion colored by the veloc-
ity magnitude. The two insets in Fig. 10b show the magnifica-
tions of these structures in the top region of the geometry and 
in the vicinity of the small hydraulic hoses, which resemble 
hair-pin vortex-like shapes that detach in the near-wall region.

(36)y
+
=

v
∗
⋅ r

w

�

,

(37)y+(i) ≈

√

�(i)

�
⋅ v∥.

To quantitatively analyze the flow, the Reynolds stresses 
are computed over the LB iterations �̄ . The turbulent kinetic 
energy k and the mean velocities v̄

a
 along a line L∗ that runs 

from the inlet to the outlet and crosses the center of the axle of 
the wheel construction are plotted over the normalized length 
of the line. The position of the line is shown in Fig. 10a. Fig-
ure 12 shows the strong increase of the turbulent kinetic energy 
in the impingement region of the wheel axle. The center of 
the wheels, i.e., the rotational axis, is located at p∗

w
= 0.3445 

(see Fig. 10a) and the wheel range is p∗

�w
= [0.2974, 0.3919] . 

A slight decrease of k is visible in the wake region, before it 
normalizes towards an equilibrium further downstream. While 
the mean axial flow component v̄

1
 strongly decreases towards 

the object, an increase of v̄
2
 and v̄

3
 due to the geometry-induced 

side-way displacement of the flow in this regions is visible. 
Downstream of the gear, v̄

3
 experiences a stronger decrease 

than v̄
2
 , which is due to the left and right mounted wheels forc-

ing the flow to move inwards. The turbulent flow is, further-
more, analyzed by means of the power spectral density PSD 
calculated for the velocity components v

a
 and the density � at 

probe locations p∗

1,2
≈ 0.4 (see Fig. 10a). Probe p∗

1
 is located 

in the center of the geometry, while p∗

2
 is located right behind 

the left wheel. Comparing the PSDs in Fig. 13a and Fig. 13b 
shows that the flow at p∗

2
 is slightly more energetic in the higher 

wave number range and experiences a stronger drop towards 
non-resolved frequencies. Especially in the lower frequency 
range, the energy content at p∗

1
 for component v

3
 is higher than 

for p∗

2
 , which is probably due to the same effect as for the tur-

bulent kinetic energy k at this location. Three wave numbers 
kw(p

∗
1
) = {0.176 ⋅ 10−3, 0.251 ⋅ 10−3, 0.325 ⋅ 10−3} , as high-

lighted by the three vertical lines in Fig. 13a, seem to domi-
nate the low wave number range for v

3
 . At p∗

2
 , a slight bump 

is visible for velocity component v
1
 at kw(p

∗
2
) = 0.113 ⋅ 10

−3 
(indicated by the vertical line in Fig. 13b). A similar behavior, 
although with a slightly higher wave number, is present for p∗

1
.

The results show the MRT method together with mesh 
refinement method and the Smagorinsky SGS model for 
LES computations to be a suitable combination to compute 
such an intricate flow over a highly complicated geometry.

4  Summary and conclusion

Over the last three decades, the LB method has grown 
mature and is nowadays used in a variety of physics and 
engineering applications. Methods for simple flow problems, 
flow in highly complex geometries, multi-phase, low- and 
high MACH, and REYNOLDS number flows have been devel-
oped. Furthermore, the LB algorithms are easy to parallelize 
and show good scaling behavior.

The simulation framework ZFS is developed by the 
Institute of Aerodynamics and Chair of Fluid Mechan-
ics, RWTH Aachen University, and is supported by 
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JARA-CSD. It features a massively parallel grid generator, 
which enables to construct hierarchical octree meshes on 
hundreds of thousands of compute cores in a small amount 
of time for the simulation of large-scale problems. It shows 
good scalability behavior on present HPC systems. Fur-
thermore, parallelized geometries can easily be generated, 
which enable to massively reduce the memory footprint 
and the preprocessing times of simulations. For the simu-
lation, different methods have been implemented with LB 
methods primarily being used for the simulation in com-
plex geometries. The standard SRT, MRT, CLB, and RLB 
models as well as the thermal MDF approach, the refine-
ment strategy, and the Smagorinsky LES approach for 
LB methods have been presented. All methods are hybrid 
MPI/OpenMP parallelized, use parallel I/O for output 
and feature internal data usage for in situ analyses of the 
results. The scalability of the SRT method has been shown 
up to 16,384 nodes on the PowerPC-based JUQUEEN sys-
tem at JSC and up to 512 nodes on the Intel-based HAZEL 
HEN machine at HLRS. To show the applicability of these 
methods, three simulation examples have been presented. 

The first example considered the flow in the human res-
piratory tract. Highly resolved simulations were carried 
out and flow regime transitions such as laminar to transi-
tional flow regions could be identified. The second exam-
ple showed the applicability to porous media flows, i.e., 
the flow in GDLs of fuel cells has been investigated. The 
method showed to be capable of dealing with highly dense 
fiber structures. The flow in GDLs is dominated by low 
REYNOLDS numbers and diffusive effects. The third exam-
ple is the flow around a front landing gear configuration 
of a VTOL jet airplane. The resolution of the simulation 
has been discussed by an analysis of the non-dimensional 
wall distance. The flow has been analyzed qualitatively 
by contours of the �-criterion and in-plane velocities as 
well as quantitatively by considering the turbulent kinetic 
energy derived from the Reynolds stress tensor and power 
spectral density analyses.

To conclude, with ZFS, an efficient multi-tool frame-
work to implement various LB methods has been estab-
lished. It allows to simulate laminar to transitional flow in 
and around complex geometries at low to medium as well 

Fig. 9  Geometric setup and 
computational mesh for the 
simulation of the turbulent flow 
around a landing gear configu-
ration

main hydraulic
damper

drag brace

wheels

hydraulic
hoses

assembly
shock strut

d

H

(a) Geometric setup of a front

landing gear configuration of a

VTOL jet airplane.

(b) Computational mesh for the simulation of the flow

around a landing gear configuration. The mesh consists

of levels lα = lβ = 7, . . . , lγ = 11.
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as higher REYNOLDS numbers leading to turbulent flow and 
at low MACH numbers. The modularity of the framework, 
however, allows for an easy integration of methods such 
as the Cumulant LB or the interface tracking method for 
high REYNOLDS number and compressible, and multi-phase 

flows. That is, an extension towards aeronautical engi-
neering applications with realistic inflight conditions is 
straightforward and is line with the research and develop-
ment strategy of the developers.

Fig. 10  Flow around a landing 
gear configuration
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Note that ZFS is already capable of simulating such 
problems by means of an FV method solving the com-
pressible Navier–Stokes equations, see, e.g., [64]. Inter-
faces of moving boundaries can be tracked by a level-set 
approach, cf. [29]. Particles can be traced with a Lagran-
gian approach [55]. Aeroacoustics are simulated with a 
coupled FV discontinuous Galerkin direct-hybrid approach 
[63] solving the flow problem and the acoustic perturba-
tion equations [16]. That is, ZFS is a tool to simulate a 
variety of multi-physics problems in engineering and 
biomedicine. The modularity of the framework allows to 
couple any of the described methods and for easy model 
and method extension.

5  Further �elds of application and outlook

The LB method is extremely appealing for a variety of 
fields of application. The cumulant LB method has, e.g., 
been used to simulate turbulent flows over a resolved 
urban canopy [46]. König and Fares [38] use the LB 
method to simulate transonic flows around the NASA 
Common Research model. The method is based on the 
trans- and supersonic method presented in [17, 67], i.e., 
it uses the D3Q39 model with a Hermite expansion to 
arrive at a fourth-order polynomial for the equilibrium 
PPDFs. Latt et  al. [44] also use the D3Q39 model to 

Fig. 11  Non-dimensional wall 
distance y+ plotted on contours 
of the signed distance func-
tion �

Fig. 12  Turbulent kinetic 
energy k and the mean velocity 
components v̄

a
 along the line L∗ 

shown in Fig. 10a. All quanti-
ties are derived from the non-
dimensional LB velocities
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simulate supersonic flows in a sod shock tube and around 
a NACA0012 profile. The LB method is also used to solve 
computational aeroacoustic (CAA) problems, e.g., to study 
the community noise of urban air transportation vehicles 
[8] in combination with a Ffowcs–Williams and Hawk-
ings acoustics model [7]. Another approach is to run a 
direct acoustic simulation, e.g., using a potential energy 
double-distribution-function (DDF) LB method [48]. Fur-
thermore, the LB method can be used to simulate micro-
fluidic behavior, where especially multi-phase flows, cf. 
Sect.  1, play an important role. For example, Harting 
et al. [28] simulate fluid flows in hydrophobic and rough 
microchannels as well as over surfaces covered by nano- or 
microscale gas bubbles. In [32], simulations of droplets 
manipulation generated in lab-on-chip (LOC) microflu-
idic T-junction are performed. For a good review on LB-
microfluid simulations, the reader is also referred to [79]. 
LB methods are also well suited to simulate rarefied gas 
flows, where for KNUDSEN numbers Kn > 0.1 continuous 

approaches such as the FV method fail [27]. For example, 
rarefied gas flows in microchannels are simulated in [78] 
using the MRT method with a second-order slip condition. 
A Bosanquet-type effective viscosity is used to correlate 
the effective relaxation time with the local KNUDSEN num-
ber to account for varying rarefaction effects. In contrast, 
a KNUDSEN-number–relaxation-time relation using the vis-
cosity-based mean free path and mean thermal speed is 
applied in [35] to simulate 2D and 3D microchannel flows.

Considering the applications presented in this manu-
script, ZFS is currently extended by the finite cell method 
[62] to simulate fluid–structure interaction (FSI) problems 
in the context of human respiration, e.g., to analyze the 
nasal valve effect. Furthermore, ZFS will be extended by a 
multi-phase LB approach such as presented in [45] to track 
water droplets diffusing through GDLs. To go to realistic 
REYNOLDS numbers in non-VTOL jet airplane landing gear 
configurations, the cumulant LB method is currently being 
implemented and validated.

Fig. 13  Power spectral density 
PSD at probe locations p∗

1,2
 

(cf. Fig. 10a) over the wave 
number k

w

(a)

(b)
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Appendix A: LB weighting factors

The coefficients tp , where p determines the number of non-zero 
components of the directions considered in the DxQy scheme, 
for the calculation of f

eq

i
 is given by the values in Table 1.

Note that the direction p = 0 corresponds to the rest-parti-
cle distribution, i.e., the PPDF that represents the particle dis-
tribution for particles residing in the local volume of interest, 
or in other words, in the local computational cell.

Appendix B: MRT vectors and matrices

The momentum vectors of the MRT method are given by:

and

where e is related to the kinetic energy, � is related to the 
kinetic energy squared, j0,1 are the two momentum compo-
nents, q0,1 are proportional to the energy fluxes, and �00,11 are 
related to the diagonal and off-diagonal components of the 
viscous stress tensor � .

The relaxation matrix K
MRT

 of the MRT method is given 
by:

where s
�
 is related to the kinematic viscosity as 

� = (s1

�
− 1) ⋅ c

2

s
�t , s

1
 is related to the bulk viscosity, and s

2
 

and s
4
 are adjustable parameters that have no effects on the 

Navier–Stokes equations.
Note that to keep the description brief, the vectors are 

only given for the D2Q9 model. For further details, the 
reader is referred to [12].

Appendix C: CLB vector and matrix

Due its complexity, the CLB transformation matrix �
CLB

 and 
the moment vector � are only given for the D2Q9 model. In 
this model, the transformation matrix reads:

and the moment vector � = (k1,… , k8)
T:

(38)� =

(

�, e, �, j0, q0, j1, q1, �00, �11

)T

(39)
�

eq =
(

1,−2� + 3(j2
0
+ j2

1
), � − 3(j2

0
+ j2

1
),

j0,−j0, j1,−j1, j2
0
+ j2

1
, j0j1

)T
,

(40)K
MRT

= diag(0, s1, s2, 0, , s4, 0, s4, s
�
, s

�
),

(41)

�
CLB

= (�1,…�9) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 − 4 0 0 0 0 4

1 − 1 1 2 0 1 − 1 1 1

1 − 1 0 − 1 1 0 0 − 2 − 2

1 − 1 − 1 2 0 − 1 1 1 1

1 0 − 1 − 1 − 1 0 − 2 0 − 2

1 1 − 1 2 0 1 1 − 1 1

1 1 0 − 1 1 0 0 2 − 2

1 1 1 2 0 − 1 − 1 − 1 1

1 0 1 − 1 − 1 0 2 0 − 2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Table 1  Direction-dependent weighting coefficients tp

DxQy scheme p = 0 p = 1 p = 2 p = 3

D2Q9 4/9 1/9 1/36 –

D3Q15 2/9 1/9 1/72 –

D3Q19 1/3 1/18 1/36 –

D3Q27 8/27 2/27 1/54 1/216

3 GCS http://www.gauss -centr e.eu.
4 JARA-CSD https ://www.jara.org/de/forsc hung/cente r-for-simul ation - 
and-data-scien ces
5 IEK-3 https ://www.fz-jueli ch.de/iek/iek-3/EN/Home/home_node.html
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