001     875386
005     20210820135950.0
024 7 _ |a 10.1126/science.abc5534
|2 doi
024 7 _ |a 2128/26311
|2 Handle
024 7 _ |a altmetric:91153593
|2 altmetric
024 7 _ |a pmid:32973004
|2 pmid
024 7 _ |a WOS:000574653300026
|2 WOS
037 _ _ |a FZJ-2020-01997
082 _ _ |a 500
100 1 _ |a Stacho, M.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a A cortex-like canonical circuit in the avian forebrain
260 _ _ |a Cambridge, Mass.
|c 2020
|b Moses King
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1629442171_14501
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Basic principles of bird and mammal brainsMammals can be very smart. They also have a brain with a cortex. It has thus often been assumed that the advanced cognitive skills of mammals are closely related to the evolution of the cerebral cortex. However, birds can also be very smart, and several bird species show amazing cognitive abilities. Although birds lack a cerebral cortex, they do have pallium, and this is considered to be analogous, if not homologous, to the cerebral cortex. An outstanding feature of the mammalian cortex is its layered architecture. In a detailed anatomical study of the bird pallium, Stacho et al. describe a similarly layered architecture. Despite the nuclear organization of the bird pallium, it has a cyto-architectonic organization that is reminiscent of the mammalian cortex.
536 _ _ |a 571 - Connectivity and Activity (POF3-571)
|0 G:(DE-HGF)POF3-571
|c POF3-571
|f POF III
|x 0
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|f H2020-SGA-FETFLAG-HBP-2017
|x 1
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|x 2
536 _ _ |a 3D Reconstruction of Nerve Fibers in the Human, the Monkey, the Rodent, and the Pigeon Brain (jinm11_20191101)
|0 G:(DE-Juel1)jinm11_20191101
|c jinm11_20191101
|f 3D Reconstruction of Nerve Fibers in the Human, the Monkey, the Rodent, and the Pigeon Brain
|x 3
700 1 _ |a Herold, C.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Rook, N.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Wagner, H.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Axer, Markus
|0 P:(DE-Juel1)131632
|b 4
|u fzj
700 1 _ |a Amunts, Katrin
|0 P:(DE-Juel1)131631
|b 5
|u fzj
700 1 _ |a Güntürkün, O.
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.1126/science.abc5534
|0 PERI:(DE-600)2066996-3
|n 6511
|p eabc5534
|t Science
|v 369
|y 2020
|x 0036-8075
856 4 _ |u https://juser.fz-juelich.de/record/875386/files/eabc5534.full.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/875386/files/Stacho%20et%20al_Sciene_2020_postprint.pdf
|y OpenAccess
|z StatID:(DE-HGF)0510
856 4 _ |u https://juser.fz-juelich.de/record/875386/files/Stacho%20et%20al_Sciene_2020_postprint.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
|z StatID:(DE-HGF)0510
909 C O |o oai:juser.fz-juelich.de:875386
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131632
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131631
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Connectivity and Activity
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-01-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-02
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-02
915 _ _ |a IF >= 40
|0 StatID:(DE-HGF)9940
|2 StatID
|b SCIENCE : 2018
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-01-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCIENCE : 2018
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2020-01-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2020-01-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-01-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-02
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21