000875403 001__ 875403
000875403 005__ 20210130004928.0
000875403 0247_ $$2doi$$a10.1103/PhysRevMaterials.4.054402
000875403 0247_ $$2Handle$$a2128/24891
000875403 0247_ $$2altmetric$$aaltmetric:81371904
000875403 0247_ $$2WOS$$aWOS:000530033600005
000875403 037__ $$aFZJ-2020-02012
000875403 082__ $$a530
000875403 1001_ $$00000-0002-7540-2683$$aWysocki, Lena$$b0$$eCorresponding author
000875403 245__ $$aValidity of magnetotransport detection of skyrmions in epitaxial SrRuO 3 heterostructures
000875403 260__ $$aCollege Park, MD$$bAPS$$c2020
000875403 3367_ $$2DRIVER$$aarticle
000875403 3367_ $$2DataCite$$aOutput Types/Journal article
000875403 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1589547175_10457
000875403 3367_ $$2BibTeX$$aARTICLE
000875403 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000875403 3367_ $$00$$2EndNote$$aJournal Article
000875403 520__ $$aA technically simple way of probing the formation of skyrmions is to measure the topological Hall resistivity that should occur in the presence of skyrmions as an additional contribution to the ordinary and anomalous Hall effect. This type of probing, lately intensively used for thin film samples, relies on the assumption that the topological Hall effect contribution can be extracted unambiguously from the measured total Hall resistivity. Ultrathin films and heterostructures of the 4d ferromagnet SrRuO3 have stirred up a lot of attention after the observation of anomalies in the Hall resistivity, which resembled a topological Hall effect contribution. These anomalies, first reported for bilayers in which the SrRuO3 was interfaced with the strong spin-orbit coupled oxide SrIrO3, were attributed to the formation of tiny Néel-type skyrmions. Here we present the investigation of heterostructures with two magnetically decoupled and electrically parallel connected SrRuO3 layers. The two SrRuO3 layers deliberately have different thicknesses, which affects the coercive field and ferromagnetic transition temperature of the two layers, and the magnitude and temperature dependence of their anomalous Hall constants. The SrRuO3 layers were separated by ultrathin layers of either the strong spin-orbit coupling oxide SrIrO3 or of the large band-gap insulator SrZrO3. Our magnetic and magnetotransport studies confirm the additivity of the anomalous Hall transverse voltages for the parallel conducting channels originating from the two ferromagnetic SrRuO3 layers as well as the possibility to tune the global anomalous Hall resistivity by magnetic field, temperature, or structural modifications at the epitaxial all-oxide interfaces. The Hall voltage loops of these two-layer heterostructures demonstrate the possibility to generate humplike structures in the Hall voltage loops of SrRuO3 heterostructures without the formation of skyrmions and emphasize that the detection of skyrmions only by Hall measurements can be misleading.
000875403 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000875403 588__ $$aDataset connected to CrossRef
000875403 7001_ $$0P:(DE-HGF)0$$aYang, Lin$$b1
000875403 7001_ $$0P:(DE-Juel1)130677$$aGunkel, Felix$$b2
000875403 7001_ $$0P:(DE-Juel1)130620$$aDittmann, Regina$$b3
000875403 7001_ $$00000-0002-3704-9890$$avan Loosdrecht, Paul H. M.$$b4
000875403 7001_ $$00000-0003-3196-7313$$aLindfors-Vrejoiu, Ionela$$b5
000875403 773__ $$0PERI:(DE-600)2898355-5$$a10.1103/PhysRevMaterials.4.054402$$gVol. 4, no. 5, p. 054402$$n5$$p054402$$tPhysical review materials$$v4$$x2475-9953$$y2020
000875403 8564_ $$uhttps://juser.fz-juelich.de/record/875403/files/PhysRevMaterials.4.054402.pdf$$yOpenAccess
000875403 8564_ $$uhttps://juser.fz-juelich.de/record/875403/files/PhysRevMaterials.4.054402.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000875403 909CO $$ooai:juser.fz-juelich.de:875403$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000875403 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130677$$aForschungszentrum Jülich$$b2$$kFZJ
000875403 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich$$b3$$kFZJ
000875403 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000875403 9141_ $$y2020
000875403 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000875403 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000875403 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV MATER : 2017
000875403 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000875403 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000875403 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000875403 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000875403 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000875403 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000875403 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000875403 980__ $$ajournal
000875403 980__ $$aVDB
000875403 980__ $$aUNRESTRICTED
000875403 980__ $$aI:(DE-Juel1)PGI-7-20110106
000875403 980__ $$aI:(DE-82)080009_20140620
000875403 9801_ $$aFullTexts