001     875403
005     20210130004928.0
024 7 _ |a 10.1103/PhysRevMaterials.4.054402
|2 doi
024 7 _ |a 2128/24891
|2 Handle
024 7 _ |a altmetric:81371904
|2 altmetric
024 7 _ |a WOS:000530033600005
|2 WOS
037 _ _ |a FZJ-2020-02012
082 _ _ |a 530
100 1 _ |a Wysocki, Lena
|0 0000-0002-7540-2683
|b 0
|e Corresponding author
245 _ _ |a Validity of magnetotransport detection of skyrmions in epitaxial SrRuO 3 heterostructures
260 _ _ |a College Park, MD
|c 2020
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1589547175_10457
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A technically simple way of probing the formation of skyrmions is to measure the topological Hall resistivity that should occur in the presence of skyrmions as an additional contribution to the ordinary and anomalous Hall effect. This type of probing, lately intensively used for thin film samples, relies on the assumption that the topological Hall effect contribution can be extracted unambiguously from the measured total Hall resistivity. Ultrathin films and heterostructures of the 4d ferromagnet SrRuO3 have stirred up a lot of attention after the observation of anomalies in the Hall resistivity, which resembled a topological Hall effect contribution. These anomalies, first reported for bilayers in which the SrRuO3 was interfaced with the strong spin-orbit coupled oxide SrIrO3, were attributed to the formation of tiny Néel-type skyrmions. Here we present the investigation of heterostructures with two magnetically decoupled and electrically parallel connected SrRuO3 layers. The two SrRuO3 layers deliberately have different thicknesses, which affects the coercive field and ferromagnetic transition temperature of the two layers, and the magnitude and temperature dependence of their anomalous Hall constants. The SrRuO3 layers were separated by ultrathin layers of either the strong spin-orbit coupling oxide SrIrO3 or of the large band-gap insulator SrZrO3. Our magnetic and magnetotransport studies confirm the additivity of the anomalous Hall transverse voltages for the parallel conducting channels originating from the two ferromagnetic SrRuO3 layers as well as the possibility to tune the global anomalous Hall resistivity by magnetic field, temperature, or structural modifications at the epitaxial all-oxide interfaces. The Hall voltage loops of these two-layer heterostructures demonstrate the possibility to generate humplike structures in the Hall voltage loops of SrRuO3 heterostructures without the formation of skyrmions and emphasize that the detection of skyrmions only by Hall measurements can be misleading.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Yang, Lin
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Gunkel, Felix
|0 P:(DE-Juel1)130677
|b 2
700 1 _ |a Dittmann, Regina
|0 P:(DE-Juel1)130620
|b 3
700 1 _ |a van Loosdrecht, Paul H. M.
|0 0000-0002-3704-9890
|b 4
700 1 _ |a Lindfors-Vrejoiu, Ionela
|0 0000-0003-3196-7313
|b 5
773 _ _ |a 10.1103/PhysRevMaterials.4.054402
|g Vol. 4, no. 5, p. 054402
|0 PERI:(DE-600)2898355-5
|n 5
|p 054402
|t Physical review materials
|v 4
|y 2020
|x 2475-9953
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/875403/files/PhysRevMaterials.4.054402.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/875403/files/PhysRevMaterials.4.054402.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:875403
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130677
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130620
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV MATER : 2017
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21