001     875404
005     20240610121123.0
024 7 _ |a 10.1021/acsomega.9b03996
|2 doi
024 7 _ |a 2128/24892
|2 Handle
024 7 _ |a pmid:32226862
|2 pmid
024 7 _ |a WOS:000521782400028
|2 WOS
037 _ _ |a FZJ-2020-02013
082 _ _ |a 660
100 1 _ |a Wysocki, Lena
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Electronic Inhomogeneity Influence on the Anomalous Hall Resistivity Loops of SrRuO 3 Epitaxially Interfaced with 5d Perovskites
260 _ _ |a Washington, DC
|c 2020
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1589547987_11632
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a SrRuO3, a 4d ferromagnet with multiple Weyl nodes at the Fermi level, offers a rich playground to design epitaxial heterostructures and superlattices with fascinating magnetic and magnetotransport properties. Interfacing ultrathin SrRuO3 layers with large spin–orbit coupling 5d transition-metal oxides, such as SrIrO3, results in pronounced peaklike anomalies in the magnetic field dependence of the Hall resistivity. Such anomalies have been attributed either to the formation of Néel-type skyrmions or to modifications of the Berry curvature of the topologically nontrivial conduction bands near the Fermi level of SrRuO3. Here, epitaxial multilayers based on SrRuO3 interfaced with 5d perovskite oxides, such as SrIrO3 and SrHfO3, were studied. This work focuses on the magnetotransport properties of the multilayers, aiming to unravel the role played by the interfaces with 5d perovskites in the peaklike anomalies of the Hall resistance loops of SrRuO3 layers. Interfacing with large band gap insulating SrHfO3 layers did not influence the anomalous Hall resistance loops, while interfacing with the nominally paramagnetic semimetal SrIrO3 resulted in pronounced peaklike anomalies, which have been lately attributed to a topological Hall effect contribution as a result of skyrmions. This interpretation is, however, under strong debate and lately alternative causes, such as inhomogeneity of the thickness and the electronic properties of the SrRuO3 layers, have been considered. Aligned with these latter proposals, our findings reveal the central role played in the anomalies of the Hall resistivity loops by electronic inhomogeneity of SrRuO3 layers due to the interfacing with semimetallic 5d5 SrIrO3.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Schöpf, Jörg
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Ziese, Michael
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Yang, Lin
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kovács, András
|0 P:(DE-Juel1)144926
|b 4
700 1 _ |a Jin, Lei
|0 P:(DE-Juel1)145711
|b 5
700 1 _ |a Versteeg, Rolf B.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Bliesener, Andrea
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Gunkel, Felix
|0 P:(DE-Juel1)130677
|b 8
700 1 _ |a Kornblum, Lior
|0 0000-0001-6305-7619
|b 9
700 1 _ |a Dittmann, Regina
|0 P:(DE-Juel1)130620
|b 10
|u fzj
700 1 _ |a van Loosdrecht, Paul H. M.
|0 0000-0002-3704-9890
|b 11
700 1 _ |a Lindfors-Vrejoiu, Ionela
|0 0000-0003-3196-7313
|b 12
|e Corresponding author
773 _ _ |a 10.1021/acsomega.9b03996
|g Vol. 5, no. 11, p. 5824 - 5833
|0 PERI:(DE-600)2861993-6
|n 11
|p 5824 - 5833
|t ACS omega
|v 5
|y 2020
|x 2470-1343
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/875404/files/acsomega.9b03996.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/875404/files/acsomega.9b03996.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:875404
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)144926
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)145711
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)130677
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)130620
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Free to read
|0 LIC:(DE-HGF)PublisherOA
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 2
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 3
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21