000875409 001__ 875409
000875409 005__ 20220930130238.0
000875409 0247_ $$2doi$$a10.1088/1751-8121/ab93ff
000875409 0247_ $$2ISSN$$a0022-3689
000875409 0247_ $$2ISSN$$a0301-0015
000875409 0247_ $$2ISSN$$a0305-4470
000875409 0247_ $$2ISSN$$a1361-6447
000875409 0247_ $$2ISSN$$a1751-8113
000875409 0247_ $$2ISSN$$a1751-8121
000875409 0247_ $$2ISSN$$a2051-2155
000875409 0247_ $$2ISSN$$a2051-2163
000875409 0247_ $$2Handle$$a2128/26306
000875409 0247_ $$2WOS$$aWOS:000615524500001
000875409 0247_ $$2altmetric$$aaltmetric:101403198
000875409 037__ $$aFZJ-2020-02018
000875409 082__ $$a530
000875409 1001_ $$0P:(DE-HGF)0$$aLeiner, David$$b0
000875409 245__ $$aSymmetry-adapted decomposition of tensor operators and the visualization of coupled spin systems
000875409 260__ $$aBristol$$bIOP Publ.$$c2020
000875409 3367_ $$2DRIVER$$aarticle
000875409 3367_ $$2DataCite$$aOutput Types/Journal article
000875409 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1606462230_10102
000875409 3367_ $$2BibTeX$$aARTICLE
000875409 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000875409 3367_ $$00$$2EndNote$$aJournal Article
000875409 520__ $$aWe study the representation and visualization of finite-dimensional, coupled quantum systems. To establish a generalized Wigner representation, multi-spin operators are decomposed into a symmetry-adapted tensor basis and are mapped to multiple spherical plots that are each assembled from linear combinations of spherical harmonics. We explicitly determine the corresponding symmetry-adapted tensor basis for up to six coupled spins 1/2 (qubits) using a first step that relies on a Clebsch-Gordan decomposition and a second step which is implemented with two different approaches based on explicit projection operators and coefficients of fractional parentage. The approach based on explicit projection operator is currently only applicable for up to four spins 1/2. The resulting generalized Wigner representation is illustrated with various examples for the cases of four to six coupled spins 1/2. We also treat the case of two coupled spins with arbitrary spin numbers (qudits) not necessarily equal to 1/2 and highlight a quantum system of a spin 1/2 coupled to a spin 1 (qutrit). Our work offers a much more detailed understanding of the symmetries appearing in coupled quantum systems.
000875409 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000875409 536__ $$0G:(DE-HGF)POF3-522$$a522 - Controlling Spin-Based Phenomena (POF3-522)$$cPOF3-522$$fPOF III$$x1
000875409 536__ $$0G:(EU-Grant)817482$$aPASQuanS - Programmable Atomic Large-Scale Quantum Simulation (817482)$$c817482$$fH2020-FETFLAG-2018-03$$x2
000875409 588__ $$aDataset connected to CrossRef
000875409 7001_ $$0P:(DE-Juel1)178647$$aZeier, Robert$$b1$$eCorresponding author
000875409 7001_ $$0P:(DE-HGF)0$$aGlaser, Steffen J.$$b2
000875409 773__ $$0PERI:(DE-600)1363010-6$$a10.1088/1751-8121/ab93ff$$n49$$p495301$$tJournal of physics / A Mathematical and theoretical$$v53$$x0022-3689$$y2020
000875409 8564_ $$uhttps://juser.fz-juelich.de/record/875409/files/ab93ff.pdf$$yOpenAccess
000875409 8767_ $$d2020-05-15$$eHybrid-OA$$jOffsetting$$lOffsetting: IOP$$pJPhysA-112936.R1
000875409 909CO $$ooai:juser.fz-juelich.de:875409$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000875409 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178647$$aForschungszentrum Jülich$$b1$$kFZJ
000875409 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000875409 9131_ $$0G:(DE-HGF)POF3-522$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x1
000875409 9141_ $$y2020
000875409 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000875409 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000875409 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000875409 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS A-MATH THEOR : 2017
000875409 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000875409 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000875409 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000875409 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000875409 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000875409 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000875409 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000875409 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000875409 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000875409 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000875409 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000875409 920__ $$lno
000875409 9201_ $$0I:(DE-Juel1)PGI-8-20190808$$kPGI-8$$lQuantum Control$$x0
000875409 980__ $$ajournal
000875409 980__ $$aVDB
000875409 980__ $$aUNRESTRICTED
000875409 980__ $$aI:(DE-Juel1)PGI-8-20190808
000875409 980__ $$aAPC
000875409 9801_ $$aAPC
000875409 9801_ $$aFullTexts