000875415 001__ 875415
000875415 005__ 20210130004929.0
000875415 0247_ $$2doi$$a10.5194/egusphere-egu2020-8488
000875415 0247_ $$2Handle$$a2128/24932
000875415 037__ $$aFZJ-2020-02021
000875415 1001_ $$0P:(DE-Juel1)169718$$aJakobi, Jannis$$b0$$eCorresponding author
000875415 1112_ $$aEGU General Assembly 2020$$cWien$$d2020-05-04 - 2020-05-08$$wAustria
000875415 245__ $$aError estimation for soil moisture measurements with cosmic-ray neutron sensing and implications for rover surveys
000875415 260__ $$c2020
000875415 3367_ $$033$$2EndNote$$aConference Paper
000875415 3367_ $$2BibTeX$$aINPROCEEDINGS
000875415 3367_ $$2DRIVER$$aconferenceObject
000875415 3367_ $$2ORCID$$aCONFERENCE_POSTER
000875415 3367_ $$2DataCite$$aOutput Types/Conference Poster
000875415 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1591094564_5817$$xAfter Call
000875415 520__ $$a<p>The cosmic ray neutron (CRN) probe is a non-invasive device to measure soil moisture at the field scale. This instrument relies on the inverse correlation between aboveground epithermal neutron intensity (1eV – 100 keV) and environmental water content. The measurement uncertainty of the neutron detector follows Poisson statistics and thus decreases with decreasing neutron intensity, which corresponds to increasing soil moisture. In order to reduce measurement uncertainty (e.g. < 0.03 m<sup>3</sup>/m<sup>3</sup>), the neutron count rate is often aggregated over large time windows (e.g. 12h or 24h). To enable shorter aggregation intervals, the measurement uncertainty can be reduced either by using more efficient detectors or by using arrays of detectors, as in the case of CRN rover applications. Depending on soil moisture and driving speed, aggregation of neutron counts may also be necessary to obtain sufficiently accurate soil moisture estimates in rover applications. To date, signal aggregation has not been investigated sufficiently with respect to the optimisation of temporal (stationary probes) and spatial (roving applications) resolution. In this work, we present an easy-to-use method for uncertainty quantification of soil moisture observations from CRN sensors based on Gaussian error propagation theory. We have estimated the uncertainty using a third order Taylor expansion and compared the result with a more computationally intensive Monte Carlo approach and found excellent agreement. Furthermore, we used our method to quantify the dependence of soil moisture uncertainty on CRN rover survey design and on selected aggregation time. We anticipate that the new approach helps to quantify cosmic ray neutron measurement uncertainty. In particular, it is anticipated that the strategic planning and evaluation of CRN rover surveys based on uncertainty requirements can be improved considerably.</p>
000875415 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000875415 536__ $$0G:(DE-HGF)TERENO-2008$$aTERENO - Terrestrial Environmental Observatories (TERENO-2008)$$cTERENO-2008$$fTERENO-2008$$x1
000875415 588__ $$aDataset connected to CrossRef
000875415 7001_ $$0P:(DE-Juel1)129472$$aHuisman, Johan Alexander$$b1
000875415 7001_ $$00000-0002-0220-0677$$aSchrön, Martin$$b2
000875415 7001_ $$0P:(DE-Juel1)178715$$aFiedler, Justus$$b3
000875415 7001_ $$0P:(DE-Juel1)168418$$aBrogi, Cosimo$$b4
000875415 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b5$$ufzj
000875415 7001_ $$0P:(DE-Juel1)129440$$aBogena, Heye$$b6
000875415 773__ $$a10.5194/egusphere-egu2020-8488
000875415 8564_ $$uhttps://juser.fz-juelich.de/record/875415/files/Jakobietal_Poster_EGU_2020.pdf$$yOpenAccess
000875415 8564_ $$uhttps://juser.fz-juelich.de/record/875415/files/Jakobietal_Poster_EGU_2020.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000875415 909CO $$ooai:juser.fz-juelich.de:875415$$pdriver$$pVDB$$popen_access$$popenaire
000875415 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169718$$aForschungszentrum Jülich$$b0$$kFZJ
000875415 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129472$$aForschungszentrum Jülich$$b1$$kFZJ
000875415 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168418$$aForschungszentrum Jülich$$b4$$kFZJ
000875415 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b5$$kFZJ
000875415 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129440$$aForschungszentrum Jülich$$b6$$kFZJ
000875415 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000875415 9141_ $$y2020
000875415 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000875415 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000875415 920__ $$lyes
000875415 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000875415 980__ $$aposter
000875415 980__ $$aVDB
000875415 980__ $$aUNRESTRICTED
000875415 980__ $$aI:(DE-Juel1)IBG-3-20101118
000875415 9801_ $$aFullTexts