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Error estimation for soil moisture measurements with cosmic-
ray neutron sensing and implications for rover surveys
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® The aboveground epithermal neutron intensity is effectively determined by surrounding hydrogen, enabling field-scale soil moisture measurements

® The uncertainty of soil moisture measurements with cosmic-ray neutron sensing (CRNS) among other sources depends on the uncertainty in poisson
distributed neutron counts: decreasing soil moisture corresponds to decreasing neutron intensity and increasing uncertainty in neutron counts

- Reduced uncertainty with more effective detectors, arrays of detectors (e.g., CRNS roving) or aggregation over long time windows (e.g., 12 or 24 h)

® We present an easy-to-apply method for assessing the soil moisture uncertainty from neutron counts, compare it to a computationally intensive
Monte Carlo approach and elaborate on implications for the planning and evaluation of CRNS rover surveys

Cosmic-ray neutrons can be converted to soil moisture via: We used an analytical Taylor expansion approach up to 3" polynomial order,
considering 6 central moments in the uncertainty distribution (Mekid and Vaja,

2008). Because the neutron count detection statistics converges to a symmetric
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0,= volumetric soil moisture [m3/m3]

Opa = soil bulk density [g/cm?] S .
0p, = volumetric soil moisture uncertainty from neutron counts [m3/m?]

N, = pressure, humidity and incoming flux corrected neutron counts [cts]

Ny = calibration parameter, usually calibrated with reference soil moisture [cts]

For evaluation we used a Monte Carlo approach:

Uncertainty from neutrons
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OoN = uncertainty in corrected neutron counts
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g Measurement uncertainty from neutron counts can be easily estimated with the proposed approach Fiedler, J. E., Brogi, C., Vereecken, H. and
g ® With appropriate aggregation the uncertaitny can be reduced significantly Bogena, H. R. (accepted). Error estimation for
Té ® The aggregation length for a roving experiment needs to be carefully selected based on: soil moisture measurements with cosmic ray
o,
O

- rover capabilites; site characterisics; accuracy requirements of the user
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