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Error estimation for soil moisture measurements with cosmic-
ray neutron sensing and implications for rover surveys
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® The aboveground epithermal neutron intensity is effectively determined by surrounding hydrogen, enabling field-scale soil moisture measurements

® The uncertainty of soil moisture measurements with cosmic-ray neutron sensing (CRNS) among other sources depends on the uncertainty in poisson
distributed neutron counts: decreasing soil moisture corresponds to decreasing neutron intensity and increasing uncertainty in neutron counts

- Reduced uncertainty with more effective detectors, arrays of detectors (e.g., CRNS roving) or aggregation over long time windows (e.g., 12 or 24 h)

® We present an easy-to-apply method for assessing the soil moisture uncertainty from neutron counts, compare it to a computationally intensive
Monte Carlo approach and elaborate on implications for the planning and evaluation of CRNS rover surveys

Cosmic-ray neutrons can be converted to soil moisture via: We used an analytical Taylor expansion approach up to 3™ polynomial order,
considering 6 central moments in the uncertainty distribution (Mekid and Vaja,

2008). Because the neutron count detection statistics converges to a symmetric
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8,,= volumetric soil moisture [m3/m3]

Opa = soil bulk density [g/cm?3] S .
0g, = volumetric soil moisture uncertainty from neutron counts [m3/m3]

N, = pressure, humidity and incoming flux corrected neutron counts [cts]

Uncertainty from neutrons

N, = calibration parameter, usually calibrated with reference soil moisture [cts] FOr evaluatiOn we used 3 MOnte Carlo approach:
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Method comparison and application

neutron sensing and implications for rover
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