000875422 001__ 875422 000875422 005__ 20240313103121.0 000875422 0247_ $$2doi$$a10.1103/PhysRevResearch.2.023174 000875422 0247_ $$2Handle$$a2128/24940 000875422 0247_ $$2altmetric$$aaltmetric:82082689 000875422 0247_ $$2WOS$$aWOS:000603585700003 000875422 037__ $$aFZJ-2020-02028 000875422 041__ $$aEnglish 000875422 082__ $$a530 000875422 1001_ $$0P:(DE-Juel1)162130$$aSenk, Johanna$$b0$$eCorresponding author 000875422 245__ $$aConditions for wave trains in spiking neural networks 000875422 260__ $$bAPS$$c2020 000875422 3367_ $$2DRIVER$$aarticle 000875422 3367_ $$2DataCite$$aOutput Types/Journal article 000875422 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1591099580_5362 000875422 3367_ $$2BibTeX$$aARTICLE 000875422 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000875422 3367_ $$00$$2EndNote$$aJournal Article 000875422 520__ $$aSpatiotemporal patterns such as traveling waves are frequently observed in recordings of neural activity. The mechanisms underlying the generation of such patterns are largely unknown. Previous studies have investigated the existence and uniqueness of different types of waves or bumps of activity using neural-field models, phenomenological coarse-grained descriptions of neural-network dynamics. But it remains unclear how these insights can be transferred to more biologically realistic networks of spiking neurons, where individual neurons fire irregularly. Here, we employ mean-field theory to reduce a microscopic model of leaky integrate-and-fire (LIF) neurons with distance-dependent connectivity to an effective neural-field model. In contrast to existing phenomenological descriptions, the dynamics in this neural-field model depends on the mean and the variance in the synaptic input, both determining the amplitude and the temporal structure of the resulting effective coupling kernel. For the neural-field model we employ linear stability analysis to derive conditions for the existence of spatial and temporal oscillations and wave trains, that is, temporally and spatially periodic traveling waves. We first prove that wave trains cannot occur in a single homogeneous population of neurons, irrespective of the form of distance dependence of the connection probability. Compatible with the architecture of cortical neural networks, wave trains emerge in two-population networks of excitatory and inhibitory neurons as a combination of delay-induced temporal oscillations and spatial oscillations due to distance-dependent connectivity profiles. Finally, we demonstrate quantitative agreement between predictions of the analytically tractable neural-field model and numerical simulations of both networks of nonlinear rate-based units and networks of LIF neurons. 000875422 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0 000875422 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x1 000875422 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x2 000875422 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x3 000875422 536__ $$0G:(GEPRIS)233510988$$aDFG project 233510988 - Mathematische Modellierung der Entstehung und Suppression pathologischer Aktivitätszustände in den Basalganglien-Kortex-Schleifen (233510988)$$c233510988$$x4 000875422 536__ $$0G:(DE-82)ZUK2-SF$$aERS Seed Fund (ZUK2) - Exploratory Research Space: Seed Fund (2) als Anschubfinanzierung zur Erforschung neuer interdisziplinärer Ideen (ZUK2-SF)$$cZUK2-SF$$x5 000875422 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x6 000875422 536__ $$0G:(DE-Juel1)HGF-SMHB-2014-2018$$aMSNN - Theory of multi-scale neuronal networks (HGF-SMHB-2014-2018)$$cHGF-SMHB-2014-2018$$fMSNN$$x7 000875422 536__ $$0G:(Grant)250128_20200305$$aCOBRA - COmputing BRAin signals (COBRA): Biophysical computations of electrical and magnetic brain signals (250128_20200305)$$c250128_20200305$$x8 000875422 7001_ $$0P:(DE-Juel1)162473$$aKorvasová, Karolína$$b1 000875422 7001_ $$0P:(DE-HGF)0$$aSchuecker, Jannis$$b2 000875422 7001_ $$0P:(DE-Juel1)164166$$aHagen, Espen$$b3 000875422 7001_ $$0P:(DE-Juel1)145211$$aTetzlaff, Tom$$b4 000875422 7001_ $$0P:(DE-Juel1)144174$$aDiesmann, Markus$$b5 000875422 7001_ $$0P:(DE-Juel1)144806$$aHelias, Moritz$$b6 000875422 773__ $$0PERI:(DE-600)3004165-X$$a10.1103/PhysRevResearch.2.023174$$n2$$p023174$$tPhysical review research$$v2$$x2643-1564$$y2020 000875422 8564_ $$uhttps://juser.fz-juelich.de/record/875422/files/PhysRevResearch.2.023174-1.pdf$$yOpenAccess 000875422 8564_ $$uhttps://juser.fz-juelich.de/record/875422/files/PhysRevResearch.2.023174-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000875422 909CO $$ooai:juser.fz-juelich.de:875422$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire 000875422 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162130$$aForschungszentrum Jülich$$b0$$kFZJ 000875422 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162473$$aForschungszentrum Jülich$$b1$$kFZJ 000875422 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145211$$aForschungszentrum Jülich$$b4$$kFZJ 000875422 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144174$$aForschungszentrum Jülich$$b5$$kFZJ 000875422 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144806$$aForschungszentrum Jülich$$b6$$kFZJ 000875422 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0 000875422 9141_ $$y2020 000875422 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000875422 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000875422 920__ $$lno 000875422 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0 000875422 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1 000875422 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2 000875422 9801_ $$aFullTexts 000875422 980__ $$ajournal 000875422 980__ $$aVDB 000875422 980__ $$aUNRESTRICTED 000875422 980__ $$aI:(DE-Juel1)INM-6-20090406 000875422 980__ $$aI:(DE-Juel1)IAS-6-20130828 000875422 980__ $$aI:(DE-Juel1)INM-10-20170113 000875422 981__ $$aI:(DE-Juel1)IAS-6-20130828