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Spatiotemporal patterns such as traveling waves are frequently observed in recordings of neural activity. The

mechanisms underlying the generation of such patterns are largely unknown. Previous studies have investigated

the existence and uniqueness of different types of waves or bumps of activity using neural-field models,

phenomenological coarse-grained descriptions of neural-network dynamics. But it remains unclear how these

insights can be transferred to more biologically realistic networks of spiking neurons, where individual neurons

fire irregularly. Here, we employ mean-field theory to reduce a microscopic model of leaky integrate-and-fire

(LIF) neurons with distance-dependent connectivity to an effective neural-field model. In contrast to existing

phenomenological descriptions, the dynamics in this neural-field model depends on the mean and the variance in

the synaptic input, both determining the amplitude and the temporal structure of the resulting effective coupling

kernel. For the neural-field model we employ linear stability analysis to derive conditions for the existence of

spatial and temporal oscillations and wave trains, that is, temporally and spatially periodic traveling waves. We

first prove that wave trains cannot occur in a single homogeneous population of neurons, irrespective of the

form of distance dependence of the connection probability. Compatible with the architecture of cortical neural

networks, wave trains emerge in two-population networks of excitatory and inhibitory neurons as a combination

of delay-induced temporal oscillations and spatial oscillations due to distance-dependent connectivity profiles.

Finally, we demonstrate quantitative agreement between predictions of the analytically tractable neural-field

model and numerical simulations of both networks of nonlinear rate-based units and networks of LIF neurons.

DOI: 10.1103/PhysRevResearch.2.023174

I. INTRODUCTION

Experimental recordings of neural activity frequently re-

veal spatiotemporal patterns such as traveling waves propa-

gating across the cortical surface [1–8] or within other brain

regions such as the thalamus [3,9] or the hippocampus [10].

These large-scale dynamical phenomena are detected in local-

field potentials (LFPs) [11] and in the spiking activity [12]

recorded with multielectrode arrays, by voltage-sensitive dye

imaging [13], or by two-photon imaging monitoring the intra-

cellular calcium concentration [14]. They have been reported

in in vitro and in in vivo experiments, in both anesthetized

and awake states, and during spontaneous as well as stimulus-

evoked activity [3].

Previous modeling studies have shown that networks of

spiking neurons with distance-dependent connectivity, ex-
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tending in one- or two-dimensional space, can exhibit a va-

riety of such spatiotemporal patterns [15–18]. For illustration,

consider the example in Fig. 1. Depending on the choice

of transmission delays, the spatial reach of connections, and

the strength of inhibition, a network of leaky integrate-and-

fire (LIF) model neurons generates asynchronous-irregular

activity [Fig. 1(a)], spatial patterns that are persistent in time

[Fig. 1(b)], spatially uniform temporal oscillations [Fig. 1(c)],

or propagating waves [Fig. 1(d)]. Distance-dependent connec-

tivity is a prominent feature of biological networks. In the

neocortex, local connections are established within a radius of

about 0.5 mm around a neuron’s cell body [19], and the prob-

ability of two neurons being connected decays with distance

[20–22].

So far, the formation of spatiotemporal patterns in neural

networks has mainly been studied by means of phenomeno-

logical neural-field models describing network dynamics at

a macroscopic spatial scale [23–25]. Such models can de-

scribe patterns in recorded brain activity that are related to

movement [26] or occur in response to a visual stimulus [27].

Neural-field models are formulated with continuous nonlin-

ear integro-differential equations for a spatially and tempo-

rally resolved activity variable and usually possess an ef-

fective distance-dependent connectivity kernel. These models
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FIG. 1. Spatiotemporal patterns in a spiking neural network model. Spiking activity of recurrently connected populations of excitatory

(E, blue) and inhibitory (I, red) leaky integrate-and-fire neurons. Each dot represents the spike-emission time of a particular neuron. Neurons

are positioned on a ring with a circumference of 1 mm. Each neuron receives a fixed number of incoming connections from its excitatory

(inhibitory) neighbors uniformly and randomly drawn within a distance of RE (RI). The spike-transmission delay d , the widths RE and RI

of the spatial connectivity profiles, and the relative inhibitory synaptic weight g are varied. (a) Asynchronous-irregular activity (d = 1 ms,

RE = RI = 0.4 mm, g = 6). (b) Oscillations in space (d = 3 ms, RE = 0.1 mm, RI = 0.15 mm, g = 5). (c) Oscillations in time (d = 6 ms,

RE = RI = 0.4 mm, g = 7). (d) Propagating waves (d = 3 ms, RE = 0.2 mm, RI = 0.07 mm, g = 5). For remaining parameters, see Table IV.

provide insights into the existence and uniqueness of diverse

patterns which are stationary or nonstationary in space and

time, such as waves, wave fronts, bumps, pulses, and periodic

patterns (reviewed in Refs. [28–34]). There are two main tech-

niques for analyzing spatiotemporal patterns in neural-field

models [32]: First, in the constructive approach introduced by

Amari [25], bump or wave solutions are explicitly constructed

by relating the spatial and temporal coordinates of a nonlinear

system (reviewed in Refs. [28, Sec. 7] and [32, Secs. 3 and

4]). Second, the emergence of periodic patterns is studied with

bifurcation theory as in the seminal works of Ermentrout and

Cowan [35–38]. In this latter framework, linear stability anal-

ysis is often employed to detect pattern-forming instabilities

and to derive conditions for the onset of pattern formation

(see for example Refs. [39,40] or the reviews [28, Sec. 8]

and [32, Sec. 5]). There are four general classes of states

that can linearly bifurcate from a homogeneous steady state: a

new uniform stationary state, temporal oscillations (spatially

uniform and periodic in time, also known as global “bulk

oscillations” [41]), spatial oscillations (spatially periodic and

stationary in time), and wave trains (spatially and temporally

periodic; special type of traveling waves); see Refs. [28,

Sec. 8] and [42–44]. The analysis of these states is often called

“(linear) Turing instability analysis” [29,44,45] referring to

the work of Turing on patterns in reaction-diffusion systems

[46]. The respective instabilities leading to these states are

termed a firing rate instability, Hopf instability [47], Turing in-

stability, and Turing-Hopf [42] or “wave” [40] instability. The

instabilities generating temporally periodic patterns (Hopf

and Turing-Hopf instabilities) are known as “dynamic” [44]

or “nonstationary” [48] instabilities, in contrast to “static”

[44] or “stationary” [48] instabilities generating temporally

stationary patterns.

The emergence of pattern-forming instabilities has been

investigated with respect to system parameters such as the

spatial reach of excitation and inhibition in an effective

connectivity profile [28]—specifically without transmission

delays [49,50], or with constant [42,51], distance-dependent

[40,41,43,45,52–56], or both types [57,58] of delays. Faye and

Faugeras [59] show the existence and uniqueness of solutions

and provide conditions for asymptotic stability of the trivial

homogeneous steady state of the corresponding linearized

system using the Lyapunov functional. The principle of lin-

earized stability for such models was proven by Veltz and

Faugeras [60]. Dijkstra et al. [61] provide a rigorous analysis

of a one-dimensional neural-field model revealing pitchfork-

Hopf bifurcations. The existence of standing waves emerging

from a Turing bifurcation of the trivial homogeneous steady

state, in a linearized neural field model with space-dependent

delays on a sphere, was shown by Visser et al. [62].

Neural-field models treat neural tissue as a continuous

excitable medium and describe neural activity in terms of a

space and time dependent real-valued quantity. Throughout

the current work the spatial coordinate refers to physical

space, although in general it could also be interpreted as

feature space. At the microscopic scale, in contrast, neural

networks are composed of discrete units (neurons)—which

interact via occasional short stereotypical pulses (spikes)

rather than continuous quantities like firing rates. In the

neocortex, spiking activity is typically highly irregular and

sparse [63,64], with weak pairwise correlations [65]. To

date, a rigorous link between this microscopic level and the

macroscopic description by neural-field models is lacking

[31,33,66,67]. While randomly connected spiking networks

have been extensively analyzed using mean-field approaches

[64,68–71], the theoretical understanding of spatially struc-

tured spiking networks is still deficient. A recent work in this

direction is Esnaola-Acebes et al. [72], who investigate ring

networks of quadratic integrate-and-fire model neurons and

provide bifurcation diagrams showing temporal oscillations
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and bump states, supported by both mathematical analysis and

simulation. But in general it remains unclear how to qualita-

tively transfer insights on the formation of spatiotemporal pat-

terns from neural fields to networks of spiking neurons. More-

over, it is unknown how the multitude of neuron, synapse, and

connectivity parameters of spiking neural networks relates to

the effective parameters in neural-field models. A quantitative

link between the two levels of description is, for example,

required for adjusting parameters in a network of spiking

neurons such that it generates a specific type of spatiotemporal

pattern, and to enable model validation by comparison with

experimental data.

Different efforts have already been undertaken to match

spiking and time-continuous rate models with spatial struc-

ture. Certain assumptions and approximations allow the ap-

plication of techniques for analyzing spatiotemporal patterns

developed for neural-field models. The above mentioned

constructive approach [25], for example, can be applied to

networks of spiking neurons under the assumption that every

neuron spikes at most once, thus ignoring the sustained spike

generation and after-spike dynamics of biological neurons

[73–75]. A related simplification substitutes a spike train

by an ansatz for a wave front. This leads to a mean-field

description of single-spike activity often applied to a spike-

response model [76–79]. Traveling-wave solutions have also

been proposed for a network of coupled oscillators and a

corresponding continuum model [80]. In the framework of bi-

furcation theory, Roxin et al. [42,51] demonstrate a qualitative

agreement between a neural-field model and a numerically

simulated network of Hodgkin-Huxley-type neurons in terms

of emerging spatiotemporal patterns. However, the authors do

not observe stable traveling waves in the spiking network,

even though the neural-field model predicts their occurrence.

In the limit of slow synaptic interactions, spiking dynamics

can be reduced to a mean-firing-rate model for studying

bifurcations [81–83]. An example is the lighthouse model

[84,85], defined as a hybrid between a phase oscillator and a

firing-rate model, that reduces to a pure rate model for slow

synapses [86]. Laing and Chow [87] demonstrate a bump

solution in a spiking network and discuss a corresponding rate

model. Recently, the group around Doiron and Rosenbaum

explored in a sequence of studies spatially structured networks

of LIF neurons without transmission delays in the continuum

limit with respect to the spatial widths of connectivity. The

authors focus on the existence of the balanced state [88],

the structure of correlations in the spiking activity [89], and

bifurcations in the linearized dynamics in relation to network

computations [90]. Spreizer et al. [91] further demonstrate

that spatiotemporal activity sequences can be induced by

anisotropic but spatially correlated connectivity. Scarpetta

et al. [92] present a network model with connectivity learned

by spike-timing-dependent plasticity that is able to store and

replay periodic spatiotemporal patterns in the spiking activity.

Kriener et al. [93] employ static mean-field theory and extend

the linearization of a network of LIF neurons with constant

delays as described by Brunel [69] to spatially structured

networks. The work derives conditions for the appearance of

spontaneous symmetry breaking that leads to stationary pe-

riodic bump solutions (spatial oscillations) and distinguishes

between the mean-driven and the fluctuation-driven regime.

A coarse-graining procedure for a ring network of modified

binary neurons with refractoriness was presented by Avitable

and Wedgwood [94]. By combining analytical and numerical

analysis they show the existence of bumps and traveling

waves.

Despite these previous works on spatially structured net-

work models of spiking neurons and attempts to link them

with neural-field models, there still exists no systematic way

of mapping parameters between these models. Furthermore,

none of these studies focuses on uncovering the underlying

mechanism of wave trains in spiking networks by searching

for Turing instabilities of the homogeneous state. In the

present work we establish the so far missing quantitative link

between a sparsely connected network of spiking LIF neurons

with spatial structure and a typical neural-field model. An

explicit parameter mapping between the two levels of descrip-

tion allows us to study the origin of spatiotemporal patterns

analytically in the neural-field model using linear stability

analysis, and to reproduce the predicted patterns in spiking ac-

tivity. We employ mean-field theory to derive the neural-field

model as an effective rate model depending on the dynamical

working point of the network that is characterized by both the

mean and the variance of the synaptic input. The rate model

accounts for biological constraints such as a synaptic weight

that is either positive (excitatory) or negative (inhibitory) and

a spatial profile that can be interpreted as a distance-dependent

connection probability. Given these constraints, we show that

wave trains cannot occur in a single homogeneous population

irrespective of the shape of distance-dependent connection

probability. For two-population networks of excitatory and

inhibitory neurons, in contrast, wave trains emerge for specific

types of spatial profiles and for sufficiently large delays, as

shown in Fig. 1(d).

The remainder of the study is structured as follows: In

Sec. II we derive the conditions for the existence of wave

trains for a typical neural-field model by linear stability

analysis, present an effective model corresponding to the

microscopic description of spiking neurons, compare the two

models, and show simulation results for validation. In Sec. III

we put our results in the context of previous literature. Finally,

Appendices A–I contain details on our approach. An account

of the presented work has previously been published in ab-

stract form in Ref. [95] and as a preprint in Ref. [96].

II. RESULTS

We aim to establish a mapping between two different levels

of description for spatially structured neural systems to which

we refer as the “neural-field model” and “spiking model,”

respectively, based on the initial model assumptions. While

the neural-field model describes neural activity as a quantity

that is continuous in space and time, the spiking model

assumes a network of recurrently connected spiking model

neurons in discrete space. Our methodological approach for

mapping between these two models, as well as the structure of

this section, are illustrated in Fig. 2. (1) We start in Secs. II A

to II C with linear stability analysis of a typical neural-field

model that is a well-known and analytically tractable rate

equation. This approach builds on existing literature (cf.

Refs. [28, Sec. 8] and [32, Sec. 5]) and introduces the concepts
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FIG. 2. Mapping microscopic single-neuron dynamics to spa-

tially averaged population dynamics. (1) Conditions for wave trains

in a neural-field model. (2) Network simulation of discrete nonlinear

rate neurons. (3) Mean-field approximation of the spiking model and

spatial averaging lead to an effective linearized continuous system.

(4) Parameter mapping between spiking and neural-field model.

(5) Network simulation of spiking neurons and validation of ana-

lytical results.

of our study with modest mathematical efforts. We analyze

the neural-field model for one and two populations and derive

conditions for the occurrence of wave trains based on spatial

connectivity profiles and transmission delays. (2) In Sec. II D

we continue with simulations of a discrete version of the

neural-field model, a network of nonlinear rate-based units,

and show that the results from our linear analysis indeed

accurately predict transitions between network states (homo-

geneously steady, spatial oscillations, temporal oscillations,

waves). (3) Then, in Sec. II E we linearize the population

dynamics of networks of discrete, spiking, leaky integrate-

and-fire (LIF) neurons using mean-field theory and derive

expressions similar to the neural-field model. (4) Thus, both

the linearized neural-field and spiking models can be treated in

a conceptually similar manner, with the exception of an effec-

tive coupling kernel which is mathematically more involved

for the spiking model. In Sec. II F we perform a parameter

mapping between the biophysically motivated parameters of

the spiking model and the effective parameters of a neural-

field model. (5) Finally, in Sec. II G we demonstrate that the

insights obtained in the analysis of the neural-field model

apply to networks of simulated LIF neurons: The bifurcations

indeed appear at the theoretically predicted parameter values.

In summary, the mapping of a microscopic spiking network

model to a continuum neural-field model (bottom up) allows

us to transfer analytically derived insights from the neural-

field model directly to the spiking model (top down).

A. Linear stability analysis of a neural-field model

We first consider a neural-field model with a single pop-

ulation defined as a continuous excitable medium with a

translation-invariant interaction kernel and delayed interaction

in one spatial dimension. The dynamics follows an integro-

differential equation:

τ
∂u

∂t
(x, t ) + u(x, t ) =

∫ ∞

−∞
m(x − y)ψ (u(y, t − d ))dy. (1)

The variable u describes the activity of the neural population

at position x at time t . Here τ > 0 denotes a time constant

and d > 0 a transmission delay. The function ψ describes the

nonlinear transformation of the output activity u if considered

as input to the neural field. The function m specifies the

translation-invariant connectivity depending only on the dis-

placement r = x − y, where x and y denote neuron positions.

Earlier studies show that specific choices for connectivities

P and nonlinear transformations ψ result in spatiotemporal

patterns such as waves or bumps [28–34].

Here, we assume that the connectivity m is isotropic

and define m(r) := w p(r). The scalar weight w can be ei-

ther positive (excitatory) or negative (inhibitory). The spa-

tial profile p(r) is a symmetric probability density function

with the properties p(r) = p(−r), p(r) > 0 for r ∈ (−∞,∞)

and
∫ ∞
−∞ p(r)dr = 1. Figure 3(a) shows, as an example, a

boxcar-shaped spatial profile with width R, defined by p(r) =
1

2R
�(R − |r|), where � denotes the Heaviside function.

Throughout this study we investigate bifurcations of the

system Eq. (1) between a state of spatially and temporally

homogeneous activity u(x, t ) = u0 to states where the activity

shows structure in the temporal domain, in the spatial domain,

or both. For this purpose we use Turing instability analysis

[29,39,40]. Initially we assume that the model parameters

are chosen such that the homogeneous solution is locally

asymptotically stable, implying that small perturbations away

from u0 will relax back to this baseline. We ask the question:

In which regions of the parameter space (R, d , w, ψ) is

the stability of the homogeneous solution lost? To this end

we linearize around the steady state and denote deviations

δu(t ) = u(t ) − u0. Without loss of generality we assume the

slope ψ ′(u0) of the gain function to be unity; a nonzero slope

can be absorbed into a redefinition of w. We here use a gain

function that allows u to become negative. Likewise, one can

treat nonlinear gain functions ψ that are strictly positive (see,

e.g., Ref. [51]). These two conventions can be mapped to

one another by a suitable shift of variables. In either case,

after linearization the deviation δu does not have a definite

sign. Because the resulting linear system is invariant with

respect to translations in time and space, its eigenmodes are

Fourier-Laplace modes of the form

δu(x, t ) = eikxeλt , (2)

where the wave number k ∈ R is real and the temporal eigen-

value λ ∈ C is complex. Solutions constructed from these

eigenmodes can oscillate in time and space, and exponen-

tially grow or decay in time. The characteristic equation [see

Eq. (A1)]

(1 + τλ) eλd = c(k) (3)

comprises the effective profile c(k) := m̂(k) := w p̂(k). The

Fourier transform of the spatial profile is denoted by p̂(k)

which, by its definition as a probability density, is maximal

at k = 0 with p̂(0) = 1 [see Eqs. (B1) and (B2)]. The effec-

tive profile for the boxcar-shaped spatial profile is shown in
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FIG. 3. Effective profile yields conditions for wave trains. (a) Boxcar-shaped spatial profile p of width R = 1 mm for a single

population. The unit of unitless quantities is denoted by a “-” in the axes labels here and in the following figures. (b) Effective profile

c (blue curve) denotes Fourier transform of spatial profile p̂ times positive weight wE = 1. Gray crosses indicate maximum cmax and

minimum cmin. Same spatial profile but with negative weight (wI = −wE) yields mirrored curve (red, dashed line). (c) Spatial profiles

of different widths for two populations E (RE = 1 mm, blue) and I (RI = 0.5 mm, red). (d) Effective profile: c(k) = wE p̂E(k) + wI p̂I(k).

(e) Transition curve ccrit
min(τ/dcrit ) given by Eq. (10) for Hopf bifurcation indicating onset of delay-induced oscillations (appearing in purple

region) with time constant τ and delay d . (f) Transition curves for relative width ρ = RI/RE and relative weight η = −wI/wE. Colored regions

indicate which extremum, the minimum cmin or the maximum cmax, has larger absolute value and whether the dominant one occurs at k = 0 or

at k > 0. Purple (1): cmin appears at kmin > 0. Light blue (2): cmin appears at kmin = 0. Dark gray (3): cmax appears at kmax = 0. Green (4): cmax

appears at kmax > 0.

Fig. 3(b), for excitatory and inhibitory weights with absolute

magnitudes of unity.

We next extend the system to two populations, an exci-

tatory one denoted by E and an inhibitory one by I. Time

constants τ and delays d are assumed to be equal for both

populations, but u becomes a vector, u = (uE, uI)
T, and the

connectivity m(r) a matrix

M(r) =
(

wEE pEE(r) wEI pEI(r)

wIE pIE(r) wII pII(r)

)
. (4)

The linearized system again possesses the same symmetries as

the counterpart for a single population so that the eigenmodes

for the deviation from the stationary state are of the form

δu(x, t ) = veikxeλt with v denoting a constant vector. Hence,

we arrive at an auxiliary eigenvalue problem [see Eq. (A2)]

with the two eigenvalues

c1,2(k) = 1
2

[
wEE p̂EE(k) + wII p̂II(k) ±

√
D

]
, (5)

where

D =
[
wEE p̂EE(k) − wII p̂II(k)

]2 + 4wEI p̂EI(k)wIE p̂IE(k).

(6)

These two eigenvalues play the same role as the effective

profile c in the one-population case above. As a consequence,

the same characteristic equation in Eq. (3) holds for both

the one- and the two-population system, as a scalar and two-

dimensional vector equation, respectively.

In the following example we restrict the weights and the

spatial profiles to be uniquely determined by the source popu-

lation alone, denoted by wαE =: wE, wαI =: wI for α ∈ {E, I}.
An illustration of the two spatial profiles of different widths

RE and RI is shown in Fig. 3(c). The respective effective pro-

file Eq. (5) reduces to c1(k) = wE p̂E(k) + wI p̂I(k) =: c(k),

and is shown in Fig. 3(d); c2 ≡ 0 for all k.

The characteristic equation Eq. (3) can be solved for the

eigenvalues λ by using the Lambert W function defined as

z = W (z)eW (z) for z ∈ C [97]. The Lambert W function has

infinitely many branches, indexed by b, and the branch with

the largest real part is denoted the principle branch (b =
0); see Eqs. (A5) and (A6) for a proof. The characteristic

equation determines the temporal eigenvalues (see Eq. (A7)

and compare with Ref. [58])

λb(k) = −
1

τ
+

1

d
Wb

(
c(k)

d

τ
e

d
τ

)
. (7)

As shown by Veltz and Faugeras [60], linearized stability

of the homogeneous steady state of Eq. (1) is fully deter-

mined by the eigenvalues in Eq. (7). These authors assume

an open bounded domain and provide an example of a one-

dimensional ring network. In our theoretical analysis, we

decide to work with the infinite domain for technical con-

venience. Formulating the problem on a ring with periodic

boundary conditions would not change any of our conclu-

sions. The added value of their approach is the possibility

to justify all steps in a mathematically rigorous way. In

our approach, the temporal eigenvalue λb is a continuous

function of the wave number k. On a bounded domain with

periodic boundary conditions, one obtains a discrete set of

wave numbers k. Since the temporal eigenvalue λb varies on a
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TABLE I. Conditions for the onset of spatial and temporal oscillations, and wave trains. Boldface

terms in each column indicate the conditions required for the instability causing the bifurcation. Terms

in normal typeface denote the conditions that prevent the respective other bifurcation. Last row indicates

whether the bifurcation happens for zero or nonzero wave number k∗. Here dcrit and ccrit
min, as defined in

Eq. (10) and shown in Fig. 3(e), denote the critical delay and the minimum of the effective profile on the

transition curve for a Hopf bifurcation.

Homogeneous Spatial oscillations Temporal oscillations Wave trains

cmax <1 1 <1 <1

cmin >ccrit
min >ccrit

min ccrit
min ccrit

min

d <dcrit <dcrit dcrit dcrit

k∗ – > 0 0 > 0

much slower scale compared to the resolution of discrete wave

numbers k, this change does not have any qualitative effect

on the resulting dynamics. The infinite domain, however,

allows us to easily incorporate spatial profiles with unbounded

support. For profiles with unbounded support that decay to

zero fast enough, the theoretical prediction of the frequency

of oscillation can be regarded as an approximation of the

dynamics on a ring with periodic boundary conditions.

B. Conditions for spatial and temporal oscillations,

and wave trains

The homogeneous (steady) state of our system is locally

asymptotically stable if the real parts of all eigenvalues λb are

negative,

Re

[
Wb

(
c(k)

d

τ
e

d
τ

)]
<

d

τ
, (8)

for all branches b of the Lambert W function. The system

loses stability when the real part of the eigenvalue λ0 on

the principle branch becomes positive at a certain k = k∗.

Such instabilities may occur either for a positive or a negative

argument of the Lambert W function.

We denote the maximum of c as cmax and the minimum

as cmin occurring at kmax and kmin, respectively, as indicated

in Figs. 3(b) and 3(d). The system becomes unstable for a

positive argument of W if cmax = 1 where W ( d
τ

e
d
τ ) = d

τ
by

the definition of the Lambert W function; so equality holds in

Eq. (8) independently of the values d and τ . The imaginary

part of λ0 is zero at such a transition because the principal

branch of the Lambert W function has real values for positive

real arguments. If the instability appears at a wave number

k∗ = 0, the population activity is collectively destabilized.

This transition corresponds in networks of binary neurons and

of spiking neurons to the transition between the asynchronous

irregular (AI) state and the synchronous regular (SR) state,

where the system ceases to be stabilized by negative feedback

and leaves the balanced state [69,98]. If this transition appears

at a wave number k∗ > 0, it follows from Eq. (2) that the

activity shows spatial oscillations that grow exponentially in

time.

For a negative argument of W of less than −1/e, the

eigenvalues in Eq. (7) come in complex conjugate pairs. The

real part of λ0 becomes positive if the condition

Re

[
W0

(
cmin

d

τ
e

d
τ

)]
=

d

τ
(9)

is fulfilled with cmin < −1. Because the eigenvalues have

nonzero imaginary parts, this transition corresponds to a Hopf

bifurcation and the onset of temporal oscillations. The condi-

tion for this bifurcation has been derived earlier [99, Eq. (10)]:

dcrit

τ
=

π − arctan
(√

ccrit2

min − 1
)

√
ccrit2

min − 1

. (10)

Here, dcrit denotes the critical delay and ccrit
min a critical mini-

mum of the effective profile for points on the transition curve.
The system is stable for cmin > −1 for all delays. For larger
absolute values of cmin, the bifurcation point is given by the
critical value of the ratio between the time constant and the
delay, shown in Fig. 3(e). If the transition occurs at k∗ = 0,
temporal oscillations emerge in which all neurons of the pop-
ulation oscillate in phase (“bulk oscillations” [41]). In spiking
networks this Hopf bifurcation corresponds to the transition
from the AI regime to the state termed “synchronous irregular
fast” (SI fast) [64]. If the transition appears for k∗ > 0, spatial
and temporal oscillations occur simultaneously. This phe-
nomenon is known as “wave trains”; see Refs. [28, Sec. 8] and
[42–44]. For the case in which the system becomes unstable
due to cmax reaching unity, the transition curve in Fig. 3(e) also
provides a lower bound ccrit

min(τ/dcrit ) above which temporal
oscillations do not occur prior to the transition due to cmax.

A Hopf bifurcation can give rise to either an asymptotically

stable or unstable limit cycle, in the super- or subcritical case,

respectively. In our analysis we only identify the Hopf bifur-

cation point by checking when a complex conjugate pair of

eigenvalues crosses the imaginary axis, and therefore cannot

predict the stability of the emerging limit cycle. If we, how-

ever, in the simulation observe the transition from an asymp-

totically stable homogeneous steady state, corresponding to

the asynchronous irregular regime, to spatiotemporal patterns,

corresponding to a stable limit cycle, and make sure that

the initial conditions are close enough to the homogeneous

steady state, we know that the bifurcation we see is indeed a

supercritical Hopf bifurcation. The analytical conditions for

wave trains that we derive are necessary, but not sufficient.

In summary, the system is stable if cmax < 1 and cmin >

ccrit
min(τ/dcrit ). For transitions occurring at either cmax = 1 or

cmin = ccrit
min(τ/dcrit ) we distinguish between solutions with
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k∗ = 0 or k∗ > 0. In Table I we provide an overview of the

conditions for bifurcations leading to spatial, temporal, or

spatiotemporal oscillatory states. These conditions imply that

a one-population neural-field model does not permit wave

trains, which follows from the fact that the absolute value of

p̂ is strictly maximal at k = 0 [see Eqs. (B1) and (B2)]. For

a purely excitatory population (w > 0) the critical minimum

ccrit
min(τ/dcrit ) therefore cannot be reached while keeping the

maximum cmax stable as cmax > |cmin|. For a purely inhibitory

population (w < 0), the condition kmin > 0 is not fulfilled

because cmin occurs at k = 0 as p̂ has its global maximum at

the origin.

For a neural-field model accounting for both excitation

and inhibition, however, we can select shapes and parameters

of the spatial profiles, weights, and the delay that fulfill the

conditions for the onset of wave trains as demonstrated by

example in the next section.

C. Application to a network with excitatory

and inhibitory populations

Based on the conditions derived in the previous section,

the minimal network in conformity with Dale’s principle in

which wave trains can occur consists of one excitatory (E) and

one inhibitory (I) population. As in the example in Sec. II A,

we assume that the connection weights and widths of boxcar-

shaped spatial profiles only depend on the source population.

The effective profile in Eq. (5) in this case is

c(k) = wE

sin (REk)

REk
+ wI

sin (RIk)

RIk
, (11)

and positive and negative peaks of the profile are responsible

for bifurcations to spatial or temporal oscillations or wave

solutions, respectively. The previous section derives that in

particular the position and height of the minima and maxima

of the effective profile are decisive. To assess parameter

ranges in which the peaks of the effective profile in Eq. (11)

change qualitatively, we introduce the relative width ρ :=
RI/RE > 0 and the relative weight η := −wI/wE > 0, divide

c(k) by wE, and introduce the rescaled wave number κ = REk

to arrive at the dimensionless reduced profile

c̃(κ ) =
sin (κ )

κ
− η

sin (ρκ )

ρκ
, (12)

which simplifies the following analysis.
Our aim is to divide the parameter space (ρ, η) into regions

that have qualitatively similar shapes of the effective profile.
Appendix C describes the derivation of transition curves and
Fig. 3(f) illustrates the resulting parameter space. Above the
first transition curve ηt1(ρ) [dashed curve; see Eq. (C7)], the
absolute value of c̃min is larger than c̃max (regions 1 and 2),
and vice versa below this curve (regions 3 and 4). The second
transition curve ηt2(ρ) [solid curve; see Eq. (C10)] indicates
whether the extremum with the largest absolute value occurs
at k = 0 (regions 2 and 3) or at k > 0 (regions 1 and 4). The
diagram provides the necessary conditions and corresponding
parameter combinations required for both spatial and spa-
tiotemporal patterns, purely based on the relative weights and
the relative widths which determine the effective profile. The
analysis shows that wave trains require wider excitation than
inhibition, ρ < 1, because only this relation simultaneously

realizes a minimum at a nonzero wave number k∗ and a
maximum with a peak below unity (see Table I).

A neural-field model exhibiting wave trains can there-

fore be constructed at will by first selecting a point within

region 1 of Fig. 3(f), where ρ < 1 and η ensures that

|̃cmin| > c̃max. Next, c is fixed by scaling c̃ with the absolute

weight wE such that cmax < 1 for a stable bump solution

and cmin < −1 for a Hopf bifurcation. Finally a delay d >

dcrit specifies a point below the bifurcation curve shown

in Fig. 3(e), given by the sufficient condition for the Hopf

bifurcation in Eq. (10). Likewise, solutions for purely tempo-

ral oscillations appear in region 2, where cmin < −1 is attained

at a vanishing wave number k and a delay d > dcrit; in addi-

tion cmax < 1 ensures the absence of the other bifurcation into

spatial oscillations. For purely spatial oscillations, however,

the comparison of the absolute values of c̃min and c̃max is not

sufficient; it is hence not sufficient to rely on the dashed curve

separating regions 2 and 4 in Fig. 3(f). A loss of stability due

to cmax > 1 can emerge not only in region 4 but also in region

2, because even if |cmin| > cmax, the stability of cmin can be

ensured by a sufficiently short delay d < dcrit, as shown in

Table I.

D. Network simulation with nonlinear rate neurons

So far we have only considered a mathematical description

of the nonlinear system with time and space represented by

continuous variables and analytically analyzed its properties

using linear stability analysis. Next, we test the derived con-

ditions for the onset of oscillations, summarized in Table I,

for a nonlinear, discrete system in the continuum limit. We

here consider a network of NE = 4000 excitatory (E) and

NI = 1000 inhibitory (I) rate neurons described by a discrete

version of the neural-field equation in Eq. (1) (see Table III

for details). The model neurons within each population are

positioned on a ring of perimeter L = 1 mm as described

in Appendix H. We choose periodic boundary conditions,

i.e., the ring topology, due to the inevitably finite size of

the discrete network although our theoretical considerations

assume the real line as domain. This rate-neuron network

constitutes an intermediate step toward a network of spiking

neurons. Each neuron has a fixed in-degree KX (fixed number

of incoming connections) per source population X ∈ {E, I}
with connections selected randomly within a distance RX . A

normalization of weights with the in-degree, w
′
X = wX /KX ,

allows us to interpret p as a connection probability. The time

constant τ and the delay d are the same as in the neural-field

model. As the nonlinear gain function in Eq. (1) we choose

ψ (u) = tanh (u).

The neuron activity of four rate-network simulations with

different parameter combinations is shown in Figs. 4(a)–4(d).

The location of the specific parameter combinations is illus-

trated in Figs. 4(e)–4(g) with corresponding markers in the

phase diagrams that visualize the stability conditions shown

in Fig. 3 derived with the neural-field model. Wave trains

are possible if parameters are in the purple regions of the

diagrams.

The system simulated in Fig. 4(a) is stable according

to the corresponding conditions. The square marker in the

lower panels shows that cmax < 1 [panel (e)], and although
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FIG. 4. Predictions from linear stability analysis lead to spatiotemporal patterns in simulated network of nonlinear rate neurons. Different

parameter combinations, selected according to stability conditions in Table I, cause pattern formation in rate-neuron network with tanh gain

function. (a)–(d) Color-coded activity per neuron over time. Neurons are shown at their position on the ring. (e)–(g) Phase diagrams showing

conditions and parameter choices indicated by corresponding markers. Purple regions indicate the possibility for wave trains. (e) Color code

indicates stability based on minimum cmin and maximum cmax. Gray: Both cmin and cmax stable. Dirty yellow: cmax unstable and cmin stable.

Dirty green: cmax unstable and cmin undetermined. Purple: cmax stable and cmin undetermined. (a) Stable activity (square marker). (b) Spatial

oscillations (diamond marker). (c) Temporal oscillations (circular marker). (d) Wave trains (star marker). Parameters: d , RE, and RI as in

Figs. 1(a)–1(d), wE = 2.73 in all panels. (a) wI = −4.10. (b) wI = −3.42. (c) wI = −4.79. (d) wI = −3.42.

cmin < −1, the delay is small such that the system is far away

from the bifurcation [panel (f)]. Indeed, the activity appears to

not exhibit any spatial or temporal structure.

Figure 4(b) illustrates a case where cmax > 1 causes an

instability [diamond marker in panel (e)]. The Hopf bifurca-

tion is remote in the parameter space [panel (f)] and panel

(g) ensures kmax > 0. A simulation of the corresponding rate-

model network again confirms the predictions and exhibits

stationary spatial oscillations (or periodic bumps). The pre-

dicted spatial frequency is kmax/(2π ) ≈ 3.74 mm−1 and we

expect L · kmax/(2π ) bumps to emerge. In this finite-sized

system with periodic boundary conditions, the bumps are

homogeneously distributed across the domain and the wave

numbers are integers; here we observe four stripes.

Figure 4(c) demonstrates temporal oscillations at the pa-

rameter combination indicated by the circular marker. We

here choose cmax < 1 and cmin < −1 [panel (e)]. The latter

condition leads to an entire range of delays that are beyond

the bifurcation in panel (f); we choose a delay slightly larger

than the critical delay, lying to the left of the bifurcation curve.

Inferred from panel (g), kmin = 0 and, as expected from the

analytical prediction, the oscillations observed in simulations

of the rate-neuron network are purely temporal. Based on the

temporal eigenvalue with the largest real part, we predict a

temporal frequency of Im [λmin]/(2π ) ≈ 66.68 Hz which fits

well to the simulated oscillation frequency.

Finally, Fig. 4(d) depicts wave trains (denoted by the star

marker), as predicted by the analytically tractable neural-field

model. The instability results from cmin < ccrit
min [panel (f)] and

occurs at kmin > 0 [panel (g)] while cmax remains stable [panel

(e)]. With a spatial frequency of kmin/(2π ) ≈ 3.02 mm−1

and a temporal frequency of Im [λmin]/(2π ) ≈ 121.01 Hz,

the predicted wave-propagation speed is Im [λmin]/(kmin) ≈
0.04 mm/ms, which is in agreement with the simulated prop-

agation speed of the wave train.

E. Linearization of spiking network model

To assess the validity of the predictions obtained from

the analytical model for biologically more realistic spiking-

neuron networks, we next linearize the dynamics of spiking

leaky integrate-and-fire (LIF) neurons and derive a linear sys-

tem similar to the neural-field model above. The subthreshold

dynamics of a single LIF neuron i with exponentially decaying

synaptic currents is described by a set of differential equations

for the time evolution of the membrane potential Vi and its
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synaptic current Ii as

τm

dVi

dt
= −Vi + Ii(t ),

τs

dI

dt
= −Ii + τm

∑

j

Ji js j (t − d ), (13)

where we follow the convention of Ref. [100] [see Eq. (G1)

for the relation to physical units]. This definition, with both

quantities Vi and Ii having the same unit, conserves the total

integrated charge per impulse flowing into the membrane

independently of the choice of the synaptic time constant

τs. The membrane time constant, defined as τm = RmCm

with membrane resistance Rm and membrane capacitance Cm,

couples current to the capacitance. We here assume τs to be

much smaller than τm. The term s j (t ) =
∑

k δ(t − t
j

k
) denotes

a spike train of neuron j which is connected to neuron i with

a constant connection strength Ji j and transmission delay d .

Whenever Vi reaches the threshold Vθ , a spike is emitted and

the membrane potential is reset to the resting potential Vr and

voltage-clamped for the refractory period τref .

We now assume that, conditioned on the time-dependent

spike emission rate νi(t ) of neuron i, spikes are generated

independently, thus with Poisson statistics (see, e.g., Ref. [64,

Sec. 3.5] for a discussion of this approximation). A neuron

then receives a superposition of many such uncorrelated and

Poisson-distributed input spikes, so that the probability dis-

tribution p(V, I, t ) follows a Chapman-Kolmogorov equation.

We further assume the amplitudes of postsynaptic poten-

tials to be small, and perform a Kramers-Moyal expansion

[101,102] up to second order, which yields a Fokker-Planck

equation for p(V, I, t ) in which the first and second infinitesi-

mal moments appear as

µi(t ) = τm

∑

j

Ji j ν j (t − d ),

σ 2
i (t ) = τm

∑

j

J2
i j ν j (t − d ). (14)

Here (µi, σi ) can be thought of as the first two moments

of a Gaussian white noise in the diffusion approximation

[68,101,103]. This synaptic noise in the input to neuron i

depends on the receiving neuron index i and hence on its

position. Therefore µi and σi also depend on the column Ji j∀ j

of the connectivity matrix. Such a mean-field approach has

been employed previously to study networks of spiking neu-

rons without spatial structure [64,68–70], where ν j = ν are

identical for all j, given by the population-averaged firing rate.

We expand on this approach by assuming that the neurons

are placed uniformly with density ρx on a one-dimensional

domain and apply the established procedure to obtain a contin-

uum limit [24]: A volume element dx of the one-dimensional

domain contains the number ρxdx of neurons. We further

assume that an incoming connection from a neuron at position

y to a neuron at position x is drawn independently and

identically distributed (i.i.d.) with probability proportional to

a spatial profile p̃(x − y). Hence the Ji j in Eq. (14) are i.i.d.

Bernoulli variables that take the value J with a probability

∝ p̃(x − y) and are zero otherwise. The expressions for the first

and second infinitesimal moment in Eq. (14) of a neuron at po-

sition x under expectation of the random connectivity are then

µ(x, t ) = τmJ

∫ ∞

−∞
p̃(x − y)ν(y, t − d )ρxdy,

σ 2(x, t ) = τmJ2

∫ ∞

−∞
p̃(x − y)ν(y, t − d )ρxdy. (15)

We find it convenient to introduce a normalized profile

p(x − y) = p̃(x−y)∫
p̃(x′ )dx′ and to define the number of incoming

connections per neuron as K :=
∫

p̃(x′)ρxdx′.
In the following we formally write down an evolution

equation for the rate ν(x, t ). We denote as ν(x, t ) =
F [µ(x, ◦), σ (x, ◦)](t ) the firing rate of a LIF neuron at

position x at time t described by Eq. (13) that is driven by a

white noise with mean µ(x, t ) and variance σ 2(x, t ). Clearly,

F [µ, σ ](t ) is a causal functional of its two arguments, which

are functions of time (temporal argument denoted by ◦). The

firing rate of the neuron at time point t only depends on the

statistics of its input up to this point, hence on µ(x, s) ∀s � t

and σ (x, s) ∀s � t . Thus we can define this functional as

F [µ(◦), σ (◦)](t ) := 〈δ(t − tk )〉ξ , where tk are the time points

of the threshold crossings of Eq. (13) under expectation

〈 〉ξ over the realization of the white noise ξ with moments

Eq. (15) and δ is the Dirac distribution. Since the statistics of

the input, the functions µ(t ) and σ (t ), are direct functions of

the firing rate ν(y, t − d ) by Eq. (15), the evolution equation

takes the form

ν(x, t ) = F

[
τmJK

∫ ∞

−∞
p(x − y)Dd ν(y)dy,

τmJ2K

∫ ∞

−∞
p(x − y)Dd ν(y)dy

]
(t ), (16)

where the delay operator Dd is defined to act on

the second (temporal) argument of the function as

[Ddν(x)](t ) = ν(x, t − d ). In principle, the functional F can

be computed—for example, by solving the mean first-passage

time for the membrane potential V to exceed the threshold.

For that purpose, we would drive the neuron with a Gaussian

noise with a given, time-dependent statistics parametrized by

µ and σ 2. Powerful numerical methods are available for this

purpose [104]. For the purpose of the present work, however,

we do not need to determine F in complete generality, since

we are only interested in a linear stability analysis of a

spatially and temporally homogeneous state ν(x, t ) = ν0.

Hence it is sufficient to study the stability of Eq. (16) with

respect to spatiotemporal deviations of the form

ν(x, t ) = ν0 + δν(x, t ), δν ≪ ν0. (17)

Linearizing Eq. (16) we obtain (by a functional Taylor

expansion or Volterra expansion to first order)

ν0+δν(x, t ) = F
[
µ0, σ

2
0

]

+
∫ ∞

−∞
p(x − y)

∫ t

−∞
hν (µ0, σ0, t−s)δν(y, s−d )ds dy

+O(δν2),

with

hν (µ0, σ0, t − s) = τmJK
δF

[
µ0, σ

2
0

]
(t )

δµ(s)

+ τmJ2K
δF

[
µ0, σ

2
0

]
(t )

δσ 2(s)
, (18)
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where we introduce the shorthand µ0 = τmJKν0 and

σ 2
0 = τmJ2Kν0. With ν0 = F [µ0, σ

2
0 ] the first line of Eq. (18)

cancels the corresponding term on the left-hand side and we

obtain a linear convolution equation for the rate deflection δν,

whose spectral properties we need to analyze. The stationary

firing rate ν0 can be determined self-consistently from this

condition [see Eq. (D1)]. The functional derivatives

δF
[
µ0, σ

2
0

]
(t )

δµ(s)
≡ lim

ǫ→0

1

ǫ

(

F
[
µ0 + ǫ δ(◦ − s), σ 2

0

]
(t )

− F
[
µ0, σ

2
0

]
(t )

)

(and analogous for δF/δσ 2) are, by the right-hand side of

this definition, the responses of the system with respect to

an impulse-like perturbation of µ and σ 2, respectively. We

denote these as

hµ(t − s) ≡
δF

[
µ0, σ

2
0

]
(t )

δµ(s)
,

hσ 2 (t − s) ≡
δF

[
µ0, σ

2
0

]
(t )

δσ 2(s)
, (19)

which are causal functions of t − s only, since we linearize

around a time-translation invariant state and causality clearly

requires both kernels to vanish for s > t . These functions

can analytically be computed in the Fourier domain for LIF

models with instantaneous synapses [64,105], for fast colored

noise [106], and in the adiabatic limit for slow synapses

[107,108]. The form of the response kernels in Eq. (19) is

given in Eqs. (D2)–(D4). These expressions are obtained by

a perturbative calculation on the level of the Fokker-Planck

equation that is correct to leading order in O(
√

τs/τm ) [106],

and thus constitute good approximations for sufficiently short

synaptic time constants. With this notation, the linearized

dynamics in Eq. (18) obeys a convolution equation in space

and time

δν(x, t ) =
∫ ∞

−∞
p(x − y)

∫ t

−∞
hν (t − s)δν(y, s − d )ds dy,

(20)

whose stability properties can be analyzed in the Fourier

domain by standard methods.

In the following section we will ignore the kernel hσ 2 ,

because its contribution is usually small [106]. Equation (20)

provides a linearized system for the spiking model that is

continuous in space and time and enables a direct comparison

with the neural-field model in the following section.

F. Comparison of neural-field and spiking models

The linearization of the LIF model presented in the pre-

ceding section is the analog to taking the derivative ψ ′ of the

gain function in the linear stability analysis of the neural-field

model in Sec. II A. By the assumption of conditional inde-

pendence of spike trains given their firing rates, we achieve

that the state of the spiking network is described by the time-

dependent firing rate profile ν(x, t ). Its temporal evolution fol-

lows Eq. (16). This function therefore conceptually plays the

same role as u(x, t ) in the neural-field model. Therefore the

results for the neural field model carry over to the spiking case.

To expose the similarities between the linearized systems of

the spiking model and the neural-field model, we may bring

the equations for the deviation from baseline activity,

δo(x, t ) =
{
δu(x, t ) neural field,

δν(x, t ) spiking,
(21)

to the form of the convolution equation,

δo(x, t ) = [h ∗ δi](x, t ),

δi(x, t ) =
∫ ∞

−∞
p(x − y)δo(y, t − d )dy, (22)

where the only difference is the convolution kernel relating the

deviation from the input δi to those of the output δo defined as

h(t ) :=
{

hnf (t ) := �(t ) w

τ
e− t

τ neural field,

hs(t ) := τmJK hµ(t ) spiking.
(23)

The kernel on the first line is the fundamental solution

(Green’s function) of the linear differential operator appear-

ing on the left-hand side of Eq. (1), including the coupling

weight w. As a consequence, the characteristic equations for

both models result from the Fourier-Laplace ansatz δo(x, t ) =
eikxeλt which relates the eigenvalues λ to the wave number k

as

H (λ) · e−λd · p̂(k) = 1. (24)

The effective transfer function H describes the linear input-

output relationship in Eq. (22) in the Laplace domain. It is

obtained as the Laplace transform of Eq. (23) of the respective

functions for the spiking model hs(t ) and for the neural-field

model hnf (t ). As a result we obtain the transfer function for

the neural-field model

Hnf (λ) =
1

1 + λτ
w. (25)

The corresponding expression for the effective spiking trans-

fer function H s(λ) results from Eqs. (D2)–(D4).

1. Parameter mapping

So far the stability analysis shows that the characteristic

equations for both the neural-field and the spiking model have

the same form [Eq. (24)] given a proper definition of the re-

spective transfer functions. The transfer function characterizes

the transmission of a small fluctuation in the input to the

output of the neuron model. Because the transfer functions

differ between the two models, it is a priori unclear whether

their characteristic equations have qualitatively similar solu-

tions. To provide evidence that this is indeed the case, in the

following we devise a procedure that identifies solutions of

the characteristic equations in Eq. (24) for the rate model and

the spiking model, and develop a practical method to obtain

one solution from the other.

To this end we use that the transfer function of the

LIF model in the fluctuation-driven regime investigated here

can be approximated by a first-order low-pass (LP) filter

([99,105,109]; see in particular Ref. [109, Fig. 1]) with ef-

fective parameters H0 and τ ,

Hµ(λ) ≈ HLP(λ) =
H0

1 + λτ
, (26)
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FIG. 5. Transfer function of spiking-neuron model and its approximation. (a) Fitting error of the low-pass filter approximation of the

transfer function for LIF neurons derived in Ref. [106] over µ and σ (given relative to the reset potential). The fitting error ǫ =
√

ǫ2
τ + ǫ2

H0

is color coded. (b) Amplitude of the transfer function Hµ and approximation HLP. Dashed line illustrates H ecs
0 following from the analytically

determined effective coupling strength [see Eq. (E1)]. (c) Phase. The white cross in panel (a) indicates the working point (µ, σ ) selected for

the transfer function shown in panels (b) and (c) and used in the simulations throughout the study.

where Hµ is the Fourier transform of hµ, defined in Eq. (19).

This simplified transfer function is similar to the the transfer

function in Eq. (25) of the neural-field model, and thereby

relates the phenomenological parameters w and τ of the

neural-field model to the biophysically motivated parameters

of the spiking model.

We perform a least-squares fit between HLP(λ) and Hµ(λ)

to obtain the values for the parameters τ and H0. According to

Eq. (23), H0 directly relates to w as

w = H0τmJK, (27)

which follows by noting that
∫

hµ(t )dt = Hµ(0) ≈ H0. The

goodness of the fit of this transfer function to the first-order

low-pass filter depends on the mean µ and variance σ of

the synaptic input, as shown in Fig. 5(a). The color-coded

error of the fit combines the relative errors from both fit-

ting parameters: ǫ =
√

ǫ2
τ + ǫ2

H0
. For the majority of work-

ing points (µ, σ ) the error is <1% but the relative errors

increase abruptly toward the mean-driven regime. In this

regime input fluctuations are small and the mean input pre-

dominantly drives the membrane potential toward threshold,

so that the model fires regularly and the transfer function

exhibits a peak close to the firing frequency [105,109]. We

here fix the working point to the parameters indicated by the

white cross [see Eq. (F2)] for all populations, resulting in a

common effective time constant τ . Here, we obtain a time

constant τ = 1.94 ms which thus lies in between the synaptic

time constant, τs = 0.5 ms, and the membrane time constant,

τm = 5 ms, of the LIF neuron model. For these parameters,

Fig. 5(b) shows the amplitude and Fig. 5(c) the phase of the

original transfer function Hµ(λ) in black and the fitted transfer

function HLP(λ) in purple. The dashed gray line denotes H0

obtained by computing the effective coupling strength from

linear response theory, H ecs
0 [see Eq. (E1)].

2. Linear interpolation between the transfer functions

Evaluating the characteristic equation for the neural-field

model yields an exact solution for each branch of the Lambert

W function, given by Eq. (7). For this model we already

established that the principle branch is the most unstable one.

An equivalent condition is not known for the general response

kernel of the LIF neuron. To assess whether we may transfer

the result for the neural-field model to the spiking case, we

investigate the correspondence between the two characteristic

equations that are both of the form Eq. (24) but with different

transfer functions. For this purpose, we define an effective

transfer function

Hα (λ) = αH s(λ) + (1 − α)Hnf (λ), (28)

with the parameter α that linearly interpolates between the

effective transfer functions of the spiking and the neural-field

model: Hα=0(λ) = Hnf (λ) and Hα=1(λ) = H s(λ). Figure 6

illustrates two different ways for solving the combined char-

acteristic equation

Hα (λ) · e−λd · p̂(k) = 1. (29)

The first results from computing the derivative ∂λ/∂α [see

Eqs. (E2)–(E4)] from the combined characteristic equation

and integrating numerically with the exact solution of the

neural-field model at α = 0 for each branch b as the initial

condition:

λ(α) =
∫ α

0

∂λ

∂α′ dα′, λ(0) = λb (30)

with

∂λ

∂α
= −

H s(λ) − Hnf (λ)

α ∂H s(λ)

∂λ
+ (1 − α) ∂Hnf (λ)

∂λ
− d · Hα (λ)

. (31)

The spatial profile only enters the initial condition, and the

derivative in Eq. (31) is independent of the wave number k.

As an alternative approach, we directly solve the combined

characteristic equation in Eq. (29) numerically with the known

initial condition. Figures 6(a) and 6(b) indicate that only the

principle branch (b = 0) becomes positive while the other

branches remain stable. The branches come in complex con-

jugate pairs. For the numerical solution of the characteristic

equation, we fix the wave number to the value of k that

corresponds to the maximum real eigenvalue.

The analysis shows that we may ignore the danger of

branch crossing since different branches remain clearly sep-

arated in Figs. 6(a) and 6(b). In addition, the eigenvalue on

the principle branch is mostly independent of α, even if the

system is close to the bifurcation (when the real part of λ0 is

close to zero). Thus for all values of α we expect qualitatively
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FIG. 6. Linear interpolation between neural-field (α = 0) and spiking (α = 1) model for eigenvalue close to bifurcation. (a) Real and

(b) imaginary part of the eigenvalue λ as a function of the linear interpolation parameter α for the characteristic equation in Eq. (29). The

solution at α = 0 for the neural-field model is exact. (c) Real and (d) imaginary part of the eigenvalues [same units but different scaling as in

panels (a) and (b)] with analytically exact solution (by Lambert W function, α = 0) as functions of the wave number k. Different branches b are

color coded (branch numbers in legend); b = 0 corresponds to the principal branch with the maximum real eigenvalue (gray cross). Circular

markers denote the linear interpolation according to the numerical integration of Eq. (30). Dashed line segments for the linear interpolation are

obtained by solving the characteristic equation in Eq. (29) numerically. Both are evaluated at the same values for α. Parameters: d = 1.5 ms,

RE = 0.2 mm, RI = 0.07 mm, g = 5.

similar bifurcations, including α = 1. This justification trans-

fers the rigorous results from the bifurcation analysis of the

neural-field model in Secs. II B and II C, and corresponding

effective parameters, to the spiking model.

G. Validation by simulation of spiking neural network

Section I illustrates spatiotemporal patterns emerging in

a spiking-network simulation in Fig. 1 and the subsequent

sections derive a theory describing the mechanisms under-

lying such patterns. Finally, the parameter mapping between

the spiking and the neural-field model explains the origin of

the spike patterns by transferring the conditions found for the

abstract neural-field model in Secs. II B and II C to the spiking

case. This section validates that the correspondence between

network parameters in the two models is not incidental but

covers the full phase diagram.

In the following, we simulate a network with the same neu-

ral populations and spatial connectivity used in the nonlinear

rate network in Fig. 4, but replace the rate-model neurons

by spiking neurons, and map the parameters as described in

Sec. II F 1. The network model characterizes all neurons by

the same working point [see Eq. (F2)], which means that

the connectivity matrix for the excitatory-inhibitory network

has equal rows; entries in Eq. (4) depend on the presynaptic

population alone. Therefore the relative in-degree γ = KI/KE

and the relative synaptic strength g = −JI/JE parametrize the

spiking-network connectivity matrix as

M(r) = τmJEKE

(
pE(r) −γ g pI(r)

pE(r) −γ g pI(r)

)
. (32)

The correspondence between the neural-field and the spiking

models allows the interpretation of the general conditions for

the onset of pattern formation in Table I in the context of

the spiking neural network considered here. The stability is

determined by the minimum and maximum of the effective

profile c(k) in Eq. (11) with wE = H0τmJEKE and wI =
−H0τmgJEγ KE according to the relation given in Eq. (27). The

parameter H0 depends on the network activity, in particular

the mean and variance of the input, and results from fitting

the transfer function; see Sec. II F 1. The critical delay is

directly derived from the minimum of the effective profile as

in Eq. (10).

The rightmost panels of Figs. 7(a)–7(c) show the same sim-

ulation results as Figs. 1(b)–1(d); likewise the panels of Fig. 1

have parameters that correspond to those of the rate-neuron

network in Fig. 4. The different patterns in Figs. 1(b)–1(d)

emerge by gradually shifting a single network parameter that

switches the system from a stable state [white filled markers

in Figs. 7(d) and 7(e)], across intermediate states (gray-scale

filled markers), to the final states where stability is lost and the

patterns have formed (black filled markers). Arrows visualize

the sequences in the phase diagrams Figs. 7(d) and 7(e)

and the markers reappear in the upper left corners of the

corresponding raster plots in Figs. 7(a)–7(c).

The sequence of panels in Fig. 7(a) illustrates a gradual

transition from a stable (AI) state to spatial oscillations at-

tained by increasing the amplitudes of excitatory postsynaptic

current (PSC) amplitudes J ′
E in the network. With J ′ we

denote the weight as a jump in current while J denotes a

jump in voltage in the physical sense, and the relationship

is J ′ = CmJ/τs [see Eq. (G1)]. The parameter variation thus

homogeneously scales the effective profile c but preserves

the shape of the reduced profile c̃ [fixed position of diamond

marker in panel (f)]. Simultaneously an increasing rate of

the external Poisson input compensates for the reduced PSC
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FIG. 7. Transitions from theoretically stable states to spatiotemporal patterns in spiking-network simulation. (a)–(c) Spike rasters showing

transition to network states in Figs. 1(b)–1(d) (same markers, same parameter combinations). The changed parameter value is given on top

of each raster plot. (a) Increasing recurrent weight J ′
E leads to onset of spatial oscillations. (b) Increasing synaptic delay d leads to onset of

temporal oscillations at k = 0. (c) Increasing delay d leads to onset of temporal oscillations at k > 0, i.e., wave trains. (d)–(e) Gray shaded

markers and white arrows labeled according to respective panels (a)–(c) in phase diagrams indicate sequences of parameter combinations and

breakdown of stability at cmax = 1 or at cmin = ccrit
min. For each sequence in panels (a)–(c), delay d , excitatory profile width RE, inhibitory profile

width RI, and the relative synaptic strength g correspond to the values given in Figs. 1(b)–1(d) with corresponding markers.
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amplitudes to maintain the fixed working point (µ, σ ) of

the neurons [see Eq. (F2)]. Diamond markers in Fig. 7(d)

show that along its path the system crosses the critical value

cmax = 1, while cmin > ccrit
min(τ/dcrit ) stays in the stable regime,

as shown in panel (e). However, even for cmax � 1 (for J ′
E =

60 pA) the network activity already exhibits weak spatial

oscillations.

Choosing the synaptic delay d as a bifurcation parameter

highlights the onset of temporal oscillations for the case k =
0 [panel (b) sequence, circular markers] and spatiotemporal

oscillations for the case k > 0 [sequence in Fig. 7(c), star

markers]. In contrast to the case of purely spatial waves in

panel (a), the procedure preserves the effective spatial profile

[fixed positions in panels (d) and (f)] and the system crosses

the transition curve in panel (e) due to increasing delay alone,

thus decreasing the ratio τ/d .

Figure 7(c) illustrates the gradual transition to wave trains,

where cmax remains in the theoretically stable regime at all

times, but is close to the critical value of 1 [see the star marker

in panel (d)]. As a result, we observe spatial oscillations with

a spatial frequency given by kmax before and even after the

Hopf bifurcation. For delays longer than the critical delay,

mixed states occur in which different instabilities due to cmax

and cmin compete. The different spatial frequencies kmax/(2π )

and kmin/(2π ) become visible. For delay values well past the

bifurcation, this mixed state is lost resulting in a dependency

only on cmin and wave trains with a spatial frequency that

depends on kmin.

III. DISCUSSION

The present paper studies spatiotemporal patterns in spik-

ing networks that result from a Turing instability of the

homogeneous state. Such patterns have so far been investi-

gated extensively in phenomenological neural-field models.

Our work shows how to quantitatively link and apply these

established methods from bifurcation theory of neural-field

equations to spiking recurrent networks. Since all models

in neuroscience are phenomenological, it is so far not clear

which level of description is the right one to obtain an un-

derstanding of brain function. Thus, unifying different model

classes is an effective way to make scientific discoveries that

are based on particular model choices comparable to one

another. Comparability fosters progress, because otherwise

one and the same mechanism may appear as two by the mere

choice of the model. To this end, the present study employs

mean-field theory [64] to rigorously map a spiking-network

model of leaky integrate-and-fire (LIF) neurons with constant

transmission delay to a neural-field model.

We use a linearization conceptually similar to that of

Kriener et al. [93] combined with an analytical expressions for

the transfer function in the presence of colored synaptic noise

[106]. The insight that this transfer function in the fluctuation-

driven regime resembles the one of a simple first-order low-

pass filter facilitates the parameter mapping between the

two models. The resulting analytically tractable effective rate

model depends on the dynamical working point of the spik-

ing network that is characterized by both the mean and the

variance of the synaptic input. By means of bifurcation the-

ory, in particular linear Turing instability analysis [29,44,45],

we investigate the origin of spatiotemporal patterns such as

temporal and spatial oscillations and in particular wave trains

emerging in spiking activity. The mechanism underlying these

waves encompasses delay-induced fast global oscillations, as

described by Brunel and Hakim [64], with spatial oscillations

due to a distance-dependent effective connectivity profile.

We derive analytical conditions for pattern formation that

are exclusively based on general characteristics of the effec-

tive connectivity profile and the delay. The profile is split

into a static weight that is either excitatory or inhibitory for

a given neural population, and a spatial modulation that can

be interpreted as a distance-dependent connection probability.

Given the biological constraint that connection probabilities

depend on distance but weights do not, wave trains cannot

occur in a single homogeneous population irrespective of the

shape of distance-dependent connection probability. Only the

effective connectivity profile of two populations (excitatory

and inhibitory) permits solutions where a mode with finite

nonzero wave number is the most unstable one, a prerequisite

for the emergence of nontrivial spatial patterns such as wave

trains. A biologically plausible solution for wave trains based

on the conditions in Table I is to have a wider spatial profile for

excitation than for inhibition. The effective spatial profile, a

weighted difference of the two, is then oscillatory in space and

thus has a peak in frequency domain at a preferred frequency.

We therefore establish a relation between the anatomically

measurable connectivity structure and observable patterns in

spiking activity. The predictions of the analytically tractable

neural-field model are validated by means of simulations of

nonlinear rate-unit networks [110] and of networks composed

of LIF-model neurons, both using the same simulation frame-

work [111]. In our experience, the ability to switch from

a model class with continuous real-valued interaction to a

model class with pulse coupling by changing a few lines in the

formal high-level model description increases the efficiency

and reliability of the research.

A qualitatively different form of spatiotemporal patterns

exists and has extensively been studied in spiking networks, in

which individual neurons fire periodically in time. Choosing

the network connectivity such that it embeds sequences of

connections then leads to the sequential activation of cells

[112]. The required sequential connectivity can be trained

by forcing each neuron to fire at a specific phase of a fixed

oscillatory cycle, while applying a spike-timing dependent

synaptic plasticity rule. Causally activated synapses are thus

strengthened and connections between acausally activated

neurons are weakened [92,113]. Such networks show a first-

order phase transition: The order parameter jumps at the

transition and the system shows hysteresis. Still, these models

also exhibit scale-free features, such as power-law statistics

[114]. An explanation is that the system may be close to

the spinodal, the point where local stability is lost and the

system behavior is dominated by fluctuations. The network

state investigated in the current paper is qualitatively differ-

ent: Individual cells here fire irregularly; they are driven by

fluctuations. The spatiotemporal pattern only arises on the

level of the collective dynamics, where a sufficiently large

portion of cells fires together at a given phase. Also, wave

trains spontaneously arise in either direction, rather than being

imprinted in the connectivity.
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The coarse-grained activity ν(x, t ) plays the role of an

order parameter [115,116]. The point of linear instability of

the spatial and temporally homogeneous solution that we

identify here with the bifurcation point can formally be seen as

the point at which a continuous phase transition sets in. In fact,

our simulations indicate that the amplitude of ν(x, t ) − ν0

gradually increases beyond the transition point, indicative of

a continuous phase transition. A formal way of deriving self-

consistency mean-field equations for a nonequilibrium statis-

tical field theory is possible for rate models [117, Eq. A8].

The presented mathematical correspondence between these

a priori distinct classes of models for neural activity has sev-

eral implications. First, as demonstrated here, results from the

well-studied domain of neural-field models can be transferred

to spiking models. The insight thus allows the community to

arrive at a coherent view of network phenomena that appear

robustly and independently of the chosen model. Second, the

quantitative mapping of the spiking model to an effective

rate model in particular reduces the parameters of the former

to the set of fewer parameters of the latter; single-neuron

and network parameters are reduced to just a weight and a

time constant. This dimensionality reduction of the parameter

space conversely implies that entire manifolds of spiking

models are equivalent with respect to their bifurcations.

Reduction of dimensionality of the parameter space sup-

ports systematic data integration: Assume a researcher wants

to construct a spiking model that reproduces a certain spa-

tiotemporal pattern. The presented expressions permit the

scientist to restrict further investigations to the manifold in pa-

rameter space in line with these observations. Variations of pa-

rameters within this manifold may lead to phenomena beyond

the predictions of the initial bifurcation analysis. Additional

constraints, such as firing rates, degree of irregularity, or cor-

relations, can then further reduce the set of admissible param-

eters. Conversely, the conditions are an easy means to assess

whether a certain experimentally observed spatiotemporal

pattern can be generated by the mechanisms described here.

To keep the focus on the transferability of results from a

neural-field to a spiking model, the present study restricts the

analysis to a rather simple network model. In many cases,

extensions to more realistic settings are straightforward. As an

example, we perform our analysis in one-dimensional space.

In two dimensions, the wave number becomes a vector and

bifurcations to periodic patterns in time and space can be

constructed (see Refs. [28, Sec. 8.4] and [29]). Likewise, we

restricted ourselves to a constant synaptic delay like Roxin

et al. [42,51] because it enables a separation of a spatial

component, the shape of the spatial profile, from temporal

components. A natural next step is the inclusion of an axonal

distance-dependent delay term as for instance in Ref. [40]

to study the interplay of both delay contributions [58]. For

simplification, we use here a boxcar-shaped spatial connec-

tivity profile in the demonstrated application of our approach.

For the emergence of spatiotemporal patterns, however, the

same conditions on the connectivity structure and the delays

hold for more realistic exponentially decaying or Gaussian-

shaped profiles [20–22,118]. If the spatial connectivity pro-

files are monotonically decaying in the Fourier domain (as

is the case for exponential or Gaussian shapes), the Fourier

transform of the effective profile of a network composed of

an excitatory and an inhibitory population exhibits at most

one zero crossing. Either the minimum or the maximum is

attained at a nonzero and finite wave number k, but not both.

With a cosine-shaped effective profile, only a single wave

number dominates by construction [42,51]. Here, we chose

the boxcar shape because of its oscillating Fourier transform

that allows us to study competition between two spatial fre-

quencies corresponding to the two extrema. Local synapses

are typically found within a distance of up to 0.5 mm from the

cell bodies [19] with appropriate space constants of decaying

connection probabilities. Our choice of boxcar-shaped profiles

with uniform connection probabilities up to a distance of

RE = 0.2 mm and RI = 0.07 mm in the case of emerging wave

trains is in a similar range.

Similar to our approach, previous neural-field studies de-

scribe the spatial connectivity profile as a symmetric proba-

bility density function (see, for example, Ref. [49]). For our

aim, to establish a link to networks of discrete neurons, the

interpretation as a connection probability and the separation

from a weight are a crucial addition. This assumption enables

us to distinguish between different neural populations, to

analyze the shape of the profile based on parameters for the

excitatory and the inhibitory contribution, and to introduce

biophysically motivated parameters for the synaptic strength.

Starting directly with an effective profile that includes both ex-

citation and inhibition, such as (inverse) Mexican hat connec-

tivity, is mathematically equivalent and a common approach

in the neural-fields literature [29,40,42,53]. But it neglects the

biological separation of neurons into excitatory and inhibitory

populations according to their effect on postsynaptic targets

(Dale’s law [119]) and their different spatial reach of connec-

tivity [120]. As a result of this simplification, these models can

produce waves even with a single homogeneous population

[42–44], while with homogeneous stationary external drive

we show that at least two populations are required.

Local excitation and distant inhibition are often used to

support stationary patterns such as bumps, while local inhibi-

tion and distant excitation are associated with nonstationary

patterns such as traveling waves [28,40,121]. For sufficiently

long synaptic delays, we also observe wave trains with local

inhibition and distant excitation, as often observed in the

cortex [120]. However, we show that the reason for this is the

specific shape of the effective spatial profile, and not only the

spatial reach itself. Our argumentation is therefore in line with

Hutt et al. [48,54], who demonstrate that wave instabilities

can even occur with local excitation and distant inhibition for

specific spatial interactions. The spatial connectivity structure

and related possible activity states are in addition important

factors for computational performance or function of model

networks [90,122].

In Sec. II D, we compute the spatial and temporal oscil-

lation frequencies as well as the wave-propagation speed.

Such quantities are directly comparable with experimental

measurements. The conduction speed in unmyelinated fibers

is in the 0.1 mm/ms range and the propagation speed of meso-

scopic waves is of similar order of magnitude [123,124]. Our

prediction based on the current choice of model parameters is

with 0.04 mm/ms in the same order of magnitude.

The parameter mapping between a neural-field and a spik-

ing model in this study relies on the insight that the transfer
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function of the LIF neuron in the fluctuation-driven regime

resembles the one of a simple first-order low-pass filter. Since

this approximation not only holds for LIF neurons, but also

for other spiking-neuron models, our results are transfer-

able. A further candidate model with this property is the

exponential integrate-and-fire model [125]. Other examples

include the work by Nordlie et al. [126] who characterize

the firing-rate responses of LIF neurons with strong alpha-

shaped synaptic currents and similarly Heiberg et al. [127]

for a LIF neuron model with conductance based synapses

and potassium-mediated after-hyperpolarization currents pro-

posed previously [128].

In the literature, the time constant of neural-field models

is often associated with the membrane or the synaptic time

constant [33,79,90]. Here, we observe that the time constant

of the neural-field model derived from the network of spiking

neurons falls in between the two. In line with [126,129], we

suggest reconsidering the meaning of the time constant in

neural-field models.

A limitation of the approach employed here is that the

linear theory is only exact at the onset of waves. Beyond the

bifurcation, it is possible that nonlinearities in the spiking

model govern the dynamics and lead to different prevailing

wave numbers or wave frequencies than predicted. Roxin

et al. [51] report that the stability of traveling waves depends

crucially on the nonlinearity. Nevertheless they do not observe

traveling waves in their spiking-network simulations. In the

present work, however, we identify biophysically motivated

neuron and network parameters that allow wave trains to

establish in a spiking network. Still, we had to increase the

delay beyond the predicted bifurcation point to obtain a stable

wave pattern.

Furthermore, the theory underlying the mapping of the

spiking network to the neural-field model is based on the

diffusion approximation and therefore only applicable for suf-

ficiently small synaptic weights. Widely distributed synaptic

weights, for example, may lead to larger deviations. We here

primarily target a wave-generating mechanism for cortical

networks. Since in other brain regions involved neuron types,

connectivity structures, and input characteristics are different,

other mechanisms for pattern formation not covered in this

work need to be taken into account [3].

In our framework, the connectivity is symmetric for pairs

of identical neuron types—there is in particular no preferred

direction of connections along the one-dimensional ring. As

a consequence, wave trains may propagate in either direction.

For instance, the wave trains of the spiking neural network

in Fig. 1(d) propagate upward while the wave trains of the

rate-neuron network in Fig. 4(d) propagate downward. This

invariance is a fundamental difference from networks with

inhomogeneous connectivity structure where the sequence of

neuronal activation is fixed and imprinted in the connectivity;

see Spreizer et al. [91] for demonstration. Similar structures

can emerge in the presence of spike-timing-dependent plastic-

ity in networks subject to sequential activation [92].

The working-point dependence of the neural-field models

derived here offers an interpretation of propagating activity

measured in vivo [8,12]. Even if the anatomical connectivity

remains unchanged during a period of observation, the sta-

bility of the neural system can be temporarily altered due to

changes in activity. The transfer function of a LIF neuron

depends on the mean and the variance of its input, and we

have shown that stability is related to its parametrization. In

particular, local changes of activity, for example due to a

spatially confined external input, can affect stability and hence

influence whether a signal remains rather local or travels

across the cortical surface. It is also conceivable that waves

of different wave numbers can selectively be activated by

changing the working point of subpopulations with distinct

connectivity profiles. This means that the tendency of a neural

network to exhibit spatiotemporal patterns not only depends

on its connectivity but is also controlled by its activity state

that can change over time.

The code to reproduce all figures of this manuscript is

publicly available at Zenodo [130]. Core functions were inte-

grated into the PYTHON package LIF MEANFIELD TOOLS, see

Ref. [131] and form part of its release v0.2 [132].
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APPENDIX A: LINEAR STABILITY ANALYSIS

1. Derivation of the characteristic equation

With the Fourier-Laplace ansatz δu(x, t ) = eikxeλt for the

integro-differential equation in Eq. (1) linearized around u0

and the choice to set the slope of the gain function to unity,

the characteristic equation in Eq. (3) results from

τλ eikxeλt = −eikxeλt +
∫ ∞

−∞
wp(x − y)eikyeλ(t−d )dy,

τλ = −1 + we−λd

∫ ∞

−∞
p(x − y)e−ik(x−y)dy

= −1 − we−λd

∫ −∞

∞
p(r)e−ikrdr (r = x − y)

= −1 + we−λd

∫ ∞

−∞
p(r)e−ikrdr

︸ ︷︷ ︸
≡p̂(k)

. (A1)
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In the last row, we recognize the Fourier transform p̂ of the

spatial profile p.

2. Effective connectivity profile for two populations

While the connectivity m is a scalar in the one-population

model, it is a matrix M in the case of two populations [given

in Eq. (4)]. The ansatz for deriving the characteristic equation

in the latter case reads δu(x, t ) = veikxeλt , with v denoting

a vector of constants. This leads to the auxiliary eigenvalue

problem

c(k)v = M̂(k)v, (A2)

where c denotes an eigenvalue and M̂ is an auxiliary matrix

containing the Fourier transforms of the entries of M:

M̂(k) =
(

wEE p̂EE(k) wEI p̂EI(k)

wIE p̂IE(k) wII p̂II(k)

)
. (A3)

Equation (A2) possesses a nontrivial solution v if and only

if det[M̂(k) − c(k)1] = 0. Equation (5) explicitly states the

two eigenvalues c1,2 solving this equation. These eigenvalues

constitute the effective profile in the characteristic equation in

Eq. (3) that hence holds also for the two-population case.

3. Largest real part on principle branch of Lambert W function

The function x(W ) = W eW has a minimum at W = −1,

no real solution for x < −e−1, a single solution for x > 0, and

two solutions for x ∈ [−e−1, 0). Typically, the term “principal

branch” of the Lambert W function with branch number b = 0

refers to the real branch defined on the interval [−e−1,∞),

where for negative arguments the larger solution is consid-

ered. Here we extend the definition to the whole real line

by the complex branch with maximal real part and positive

imaginary part on (−∞,−e−1).

We demonstrate that the branch of the Lambert W function

with the largest real part is the principal branch. Consid-

ering only real-valued arguments x ∈ R, we write W (x) =
|W (x)|eiϕ = α + iβ and

W (x)eW (x) = |W (x)|eαei(ϕ+β ) = x ∈ R (A4)

→ ei(ϕ+β ) = ±1, (A5)

where ϕ ∈ [−π, π ] is the principal value. We index the

branches by q ∈ Z according to the number of half-cycles of

the exponential in Eq. (A5): ϕ + β = q · π . The branch num-

ber is equal to b = ⌊ q

2
⌋ with ⌊·⌋ denoting the floor function.

The principle branch is therefore given by the index q = 0 for

x � 0 and by q = 1 for x < 0.

Taking the absolute square of Eq. (A4) yields the real

equation

x2 e−2α = α2 + β2. (A6)

Without loss of generality we may assume β � 0; this is

certainly true for the real solutions with β = 0 and it also

holds for one of the complex solutions for any complex

pair. Complex solutions come in conjugate pairs due to the

symmetry (ϕ, β ) → (−ϕ,−β ) exhibited by Eqs. (A5) and

(A6). Since each member of a pair has by definition the same

real part, it is sufficient to consider only the member with

positive imaginary part β > 0.
To prove that the real part α of W is maximal for b = 0, we

show that α is a decreasing function of β along the solutions
of Eq. (A4). Investigating the intersections of the left-hand
side and the right-hand side of Eq. (A6) as a function of α

illustrates how increasing the imaginary part β affects the real
part α. The left-hand side is a decaying function of α with
an intercept of x2. The right-hand side is a parabola with an
offset of β2.

For x ∈ (−∞,−e−1) ∪ [0,∞), an intersection occurs ei-
ther at a positive real part α � 0 if x2 � β2, or at a negative
real part α < 0 if x2 < β2. Increasing β moves the parabola
upward and therefore the intersection to the left, meaning that
α decreases with increasing β.

For x ∈ [−e−1, 0), we distinguish the cases β = 0 and β >

0 which both have only solutions with α < 0. First, the two

real solutions (q = ±1) existing in this interval correspond

to two simultaneously occurring intersections; in addition a

third intersection is created by the squaring in Eq. (A6) but

it is not an actual solution of Eq. (A4). The intersection at

the larger real part per definition corresponds to the principal

branch with index q = 1. Second, the complex solutions are

indexed by odd numbers q with |q| > 1. Taking into account

the interval where ϕ is defined, the imaginary part is bounded

from below such that β � 2π for nonprincipal branches.

Analogous to the previously discussed interval of x, there

exists only one intersection between the exponential function

and the parabola for large values of β (in particular: x2 < β2)

that moves toward smaller values of α with increasing β.

So in summary we have shown that for real x, the principal

branch harbors the solutions with maximal real part α.

4. Characteristic equation with Lambert W function

The characteristic equation in Eq. (3) can be rewritten

in terms of the Lambert W function to Eq. (7) using the

transformation

(1 + τλ)eλd = c(k)

∣∣∣∣ ·
d

τ
e

d
τ ,

(
dλ +

d

τ

)
edλ+ d

τ = c(k)
d

τ
e

d
τ , (A7)

dλ +
d

τ
= W

(
c(k)

d

τ
e

d
τ

)
.

The last step collects terms using the definition of the Lambert

W function, z = W (z)eW (z) with z ∈ C.

APPENDIX B: PROPERTIES OF THE SPATIAL PROFILE

We assume that the spatial profile p is a symmetric prob-

ability density function, which implies that its Fourier trans-

form p̂, also called the characteristic function, is real valued

and even. Further, we can prove that p̂ ∈ (−1, 1] and that p̂

attains 1 only at the origin in two steps:

(1) | p̂(k)| � 1 for all k ∈ R:

| p̂(k)| =
∣∣∣∣
∫ ∞

−∞
p(r)e−ikrdr

∣∣∣∣ �
∫ ∞

−∞

∣∣p(r)e−ikr
∣∣dr

=
∫ ∞

−∞
p(r)dr = 1 for all k ∈ R, (B1)
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FIG. 8. Graphical analysis for extrema of reduced profile for derivation of transition curves. (a) The condition for the extremum [Eq. (C2)]

amounts to the addition of two vectors in the complex plane whose sum is purely imaginary. The vectors have lengths a1 and a2 and angles φ1

and φ2, defined in Eq. (C3). (b) Diagram of Fig. 3(f) with indicated parameter combinations (ρ, η) as used in panels (c) and (d). (c), (d) Reduced

profile c̃ (top) and φ1 and φ±
1 from Eq. (C4) versus κ (bottom) for two different combinations of (ρ, η) with line colors corresponding to regions

in panel (b). (c) |̃cmin| > c̃max in purple and vice versa in dark gray. (d) c̃min at κ = 0 in light blue and at κ > 0 in purple.

(2) | p̂(k)| < 1 for all k �= 0:

∣∣∣∣
∫ ∞

−∞
p(r)e−ikrdr

∣∣∣∣ �
∫ ∞

−∞
p(r)|cos (kr)|dr

<

∫ ∞

−∞
p(r)dr = 1 for all k �= 0,

(B2)

because | cos (kr)| < 1 except for a set of measure zero in r if

k �= 0, which does not influence the value of the integral.

APPENDIX C: TRANSITION CURVES

FOR REDUCED PROFILE

We here use a graphical approach to derive the transition

curves shown first in Fig. 3(f). A necessary condition for

an extreme value of the reduced profile c̃(κ ) from Eq. (12)

located at κ∗ is ∂
∂κ

c̃(κ )|κ∗ = 0. With the derivative

∂

∂κ
c̃(κ ) =

cos (κ )

κ
−

sin (κ )

κ2
− η

cos (ρκ )

κ
+ η

sin (ρκ )

ρκ2
,

(C1)

this condition can be rewritten as

0 = Re

[
(κ + i)eiκ −

η

ρ
(ρκ + i)eiρκ

]

= Re[a1eiφ1 + a2eiφ2 ]

= a1 cos (φ1) + a2 cos (φ2), (C2)

where a1 and a2 are the absolute values of the complex

numbers and φ1 and φ2 their phases, given by

a1(κ ) =
√

1 + κ2,

φ1(κ ) = κ +
π

2
− arctan (κ ),

a2(κ; ρ, γ ) =
η

ρ

√
1 + ρ2κ2,

φ2(κ; ρ) = ρκ +
3π

2
− arctan (ρκ ). (C3)

The vanishing right-hand side of Eq. (C2) implies that the

term in the square brackets is purely imaginary. An example

solution for the case a1 < a2 is illustrated in Fig. 8(a) in

the complex plane. Note that a1 and φ1 are independent of

the parameters ρ and η in this representation. In our graphical

analysis, Eq. (C2) is interpreted as the sum of two vectors in

the complex plane. As shown in Fig. 8(a), we determine φ1

as the angle at which the tip of the second vector ends on the

imaginary axis, which follows from elementary trigonometry

as

φ±
1 = π ± arccos

[
a2

a1

cos (φ2)

]
. (C4)

The locations of extrema are then given by the intersections

of φ±
1 with the second row of Eq. (C3). Here φ2 is determined

from the last equation in Eq. (C2).

Figure 8(b) reproduces Fig. 3(f). The white bars connect

points given by parameter combinations (ρ, η) on both sides

of the transition curves, and the parameters are specified in

panels (c) and (d). The first transition curve ηt1(ρ) [dashed

line in Fig. 8(b)] is determined by c̃max(κmax) = |̃cmin(κmin)|,
which means that it is determined by parameters (ρ, η) for

which the absolute values of the positive and negative ex-

tremum of the profile are equal. The top panel of Fig. 8(c)

compares two reduced profiles obtained for a fixed value

for ρ and two values for η. The line colors correspond

to the colored regions in the diagram in Fig. 8(b) for the

respective parameter combination |̃cmin| > c̃max for the purple

profile and vice versa for the dark gray profile. The point with
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the maximum absolute value of each profile is indicated with

a cross. Exactly at the transition either κmax or κmin is zero (for

example κ0 = 0) and the other one is nonzero (for example

κ1 > 0). This condition, with Eq. (12), yields the absolute

value for both extrema at the transition, where they must

be equal, and thus |̃c(κ0)| = |̃c(κ1)| = |1 − η|. Any point on

the transition curve is a unique triplet of parameters (ρ, η, κ1),

and with the condition ∂
∂κ

c̃(κ )|κ1
= 0 we obtain two equations

that need to be fulfilled at each point for κ = κ1:

1 − η =
sin (κ )

κ
− η

sin (ρκ )

ρκ
,

1 − η = cos (κ ) − η cos (ρκ ). (C5)

The lower equation is obtained by identifying c̃(κ ) in its

derivative in Eq. (C1). We solve both equations with respect

to η and equate them to get

1

κ
sin (κ )[1 + cos (ρκ )] −

1

ρκ
sin (ρκ )[1 + cos (κ )]

+ cos (ρκ ) − cos (κ ) = 0. (C6)

For a given value of ρ, we compute the roots of the left-

hand-side expression, which defines κ (ρ). The bottom panel

of Fig. 8(c) shows φ1 from Eq. (C3) as a black line and φ±
1

from Eq. (C4) for the parameters of the two effective profiles

(same color coding as in the top panel). The intersections

corresponding to the relevant extrema are highlighted by

crosses. This visual analysis allows us to identify the interval

for κ in which zero crossings of the left-hand side of Eq. (C6)

as a function of κ can correspond to the extrema; that is,

κ ∈ (0, 4.49341), where the lower limit corresponds to φ1 =
π
2

and the upper limit to φ1 = 3π
2

. The zero crossing at the

smallest nonzero κ indicates the extremum at κ1. Finally, the

transition curve is given by

ηt1(ρ) =
1 + cos [κ (ρ)]

1 + cos [ρκ (ρ)]
, (C7)

where κ (ρ) is given by the roots of Eq. (C6).

The second transition curve ηt2(ρ) [solid line in Fig. 8(b)]

indicates whether the extremum with the largest absolute

value occurs at κ = 0 or at κ > 0. Figure 8(d) shows in the

top panel two reduced profiles for a fixed value of η, but two

values for ρ such that c̃min occurs once at κmin = 0 [light blue

as in Fig. 8(b)] and once at κmin > 0 [purple as in Fig. 8(b)],

indicated by cross markers.

Graphical analysis using the bottom panel of Fig. 8(d) indi-

cates that this transition happens when φ−
1 at κ � 0 switches

from lying slightly above (light blue line) to below (purple

line) the parameter-independent function φ1 (black line). We

observe that decreasing ρ moves the intersection point and

with it the location of the extremum up the black line, starting

from κ = 0 to larger values for κ .

Close to the transition, the intersection point comes arbi-

trarily close to κ = 0, which permits local analysis by a Taylor

expansion of φ1 for small κ:

φ1(κ ) ≈
π

2
+

κ3

3
+ O(κ5), (C8)

φ−
1 (κ; ρ, η) ≈

π

2
+

ηρκ3

3
+ O((ρκ )5). (C9)

A comparison of the coefficients of the third-order polynomi-

als then gives the transition curve

ηt2(ρ) =
1

ρ2
, (C10)

because this coefficient decides for small κ whether φ1 (black

line) or φ−
1 as a function of the parameters (ρ, η) has a larger

slope and lies on top.

APPENDIX D: LINEARIZATION OF THE SPIKING MODEL

The stationary firing rate of a LIF neuron model subject

to fast synaptic noise has been derived in Refs. [109,134].

The linear response of the model to time-dependent stimuli

has been derived in Ref. [106, Eq. (29)], by application of

a general reduction technique to a white noise system with

displaced boundary conditions.

1. Stationary firing rate

The stationary firing rate ν0 in the limit of short synaptic

time constants (τs ≪ τm) is given by [99,134, Eq. (A1)]

ν−1
0 = τr + τm

√
π

[
F (yθ ) − F (yr )

]
,

f (y) = ey2[
1 + erf (y)

]
, F (y) =

∫ y

−∞
f
(
y′)dy′,

with

y{θ,r} =
V{θ,r} − µ

σ
+

β

2

√
τs

τm

,

β =
√

2

∣∣∣∣ζ
(

1

2

)∣∣∣∣, (D1)

where ζ denotes the Riemann zeta function [135].

2. Transfer function

The linear response of the firing rate is described by

the transfer function, here denoted by Hµ, which relates the

modulation of the firing rate δν(ω) to the modulation of the

mean δµ(ω) as

δν(ω) = HG(ω)δµ(ω) + O(δµ2).

It is computed based on the first term of Ref. [106, Eq. (29)]

HG(ω) =
ν0

√
2

σ

1 + iωτm

�′
ω|xr

xθ

�ω|xr

xθ

, (D2)

for the oscillation frequency ω and the boundaries x{r,θ} =√
2y{θ,r}. The function �ω(x) = e

1
4

x2

U (iωτm − 1
2
, x) is de-

fined by parabolic cylinder functions U [105,135] and

�′
ω = ∂x�ω. �ω|xr

xθ is a shorthand notation for �ω(xr ) −
�ω(xθ ). We need to multiply the transfer function with the

transfer function of a first-order low-pass filter due to the

exponential time course of our synaptic currents:

Hµ(ω) = HG(ω)
1

1 + iωτs

. (D3)

We then obtain hµ by an inverse Fourier transform and a

Laplace transform because λ is a complex frequency and ω
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is real in the present context:

hµ(t ) = F
−1[Hµ](t ),

Hµ(λ) = L[hµ](λ). (D4)

The latter relations imply a replacement iω → λ in Eq. (D2).

For completeness we also provide the term due to the

modulation of the variance [106, Eq. (29)], cf. also Eq. (19),

Hσ 2 (ω) =
1

σ 2

ν0

2 + iω

�′′
ω|xr

xθ

�ω|xr
xθ

.

In the fluctuation-driven regime, Hµ and Hσ 2 both have a

maximum at vanishing frequency. We compare these two

contributions and assume that Hσ 2 can be neglected with only

making a small error.

APPENDIX E: MODEL COMPARISON

1. Effective coupling strength

For the numerical evaluation of the transfer function, we

show H ecs
0 = w

ecs/(τmJK ) as the dashed line in Fig. 5(b),

obtained by calculating analytically the effective coupling

strength w
ecs from linear-response theory. The effective cou-

pling strength for a connection from neuron j with rate ν j to

neuron i with rate νi is defined as in Ref. [99, Eqs. (A2) and

(A3) (correcting a typo in this previous work)]

w
ecs
i j =

∂νi

∂ν j

= α̃Ji j + β̃J2
i j

with

α̃ =
√

π (τmνi )
2 1

σi

[
f (yθ ) − f (yr )

]

and

β̃ =
√

π (τmνi )
2 1

2σ 2
i

[
f (yθ ) yθ − f (yr )yr

]
, (E1)

where f and y{θ,r} are defined as in Eq. (D1). The dashed line

in Fig. 5(b) is given by the term ∝α̃ alone since we ignore the

small contribution of the variance to the transfer function Hσ 2

of the LIF neuron [106].

2. Linear interpolation

To compute the derivative dλ/dα given in Eq. (31), we use

a method for computing the derivative of an implicit function:

If R(α, λ) = 0, it follows that the derivative

∂λ

∂α
= −

∂R/∂α

∂R/∂λ
=: −

Rα

Rλ

. (E2)

With the characteristic equation for the effective transfer

function Eq. (29), we get

R(α, λ) = Hα (λ) · e−λd · p̂(k) − 1 = 0. (E3)

The partial derivatives of R with respect to α and λ are

Rα = e−λd · p̂(k) ·
∂Hα (λ)

∂α

= e−λd · p̂(k) · [H s(λ) − Hnf (λ)]

and

Rλ = p̂(k) ·
∂

∂λ
[Hα (λ) · e−λd ]

= e−λd · p̂(k) ·
[
∂Hα (λ)

∂λ
− d · Hα (λ)

]

= e−λd · p̂(k) ·
[
α

∂H s(λ)

∂λ
+(1−α)

∂Hnf (λ)

∂λ
−d · Hα (λ)

]

= e−λd · p̂(k) ·
[
αH s

λ(λ) + (1 − α) · Hnf
λ (λ) − d · Hα (λ)

]
.

(E4)

APPENDIX F: FIXING THE WORKING POINT

For the spiking model, we fix the total input to each

neuron in terms of its mean µ∗ and variance (σ ∗)2 to given

values. To attain a fixed working point (µ∗, σ ∗), we add to

the local contribution from the recurrently connected network

[see Eq. (15)] external excitatory and inhibitory input with

Poisson-distributed interspike interval statistics:

µ∗ = µ + τmJ (νE,ext − gνI,ext ),

(σ ∗)2 = σ 2 + τmJ2(νE,ext + g2νI,ext ). (F1)

The excitatory and inhibitory external connection strengths

are J and −gJ , respectively. The expressions for the excitatory

and inhibitory external rates are

νE,ext =
σ̃ 2 + g̃µ

1 + g
and νI,ext =

σ̃ 2 − µ̃

g(1 + g)
(F2)

with

µ̃ =
µ∗ − µ

τmJ
and σ̃ 2 =

(σ ∗)2 − σ 2

τmJ2
.

Equation (F2) corrects a small inconsistency in a preliminary

report of this study [96] which used Eq. (E1) in Ref. [99] to

fix the working point. Accordingly, the values for νE,ext and

νI,ext are updated in Table IV.

APPENDIX G: PHYSICAL UNITS

The subthreshold dynamics of the LIF neuron in Eq. (13)

are, without loss of generality, given in scaled units. In this

formulation, V , J , and I are all quantities in units of volts.

For the parameter-wise comparison with numerical network

simulation (for example using NEST [111]), it is useful to

consider a description where I ′ and J ′ represent electric

currents in units of amperes:

τm

dV ′
i

dt
= −(V ′

i − EL ) + RmI ′
i(t ),

τs

dI ′
i

dt
= −I ′

i + τs

∑

j

J ′
i js j (t − d ). (G1)

Here, we also introduce a resistive leak reversal potential

EL, and shift threshold and reset potentials V ′
θ = Vθ + EL

and V ′
r = Vr + EL, respectively. The membrane time constant
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FIG. 9. Rate-neuron network simulation with symmetric connec-

tivity. Same network parameters as in Fig. 4(b), but simulated with a

connection routine that picks source neurons symmetrically from the

left and right of each target neuron. Duration of the simulation here

is Tsim = 2050 ms.

τm = RmCm relates the membrane resistance Rm and capac-

itance Cm. In units of amperes, the total current input is

I ′ = I/Rm and the synaptic weight amplitude is J ′ = CmJ/τs.

APPENDIX H: NETWORK STRUCTURE

AND PARAMETERS

We simulate recurrently connected neural networks of one

excitatory and one inhibitory population each using the neural

simulation software NEST [137] with either spiking- or rate-

neuron models. The support for rate neurons in NEST was

added as described in Ref. [110]. Tables II and III provide

the complete neuron and network model descriptions and

Table IV summarizes all parameters as used for the net-

work state showing wave trains [marked by black star in

Figs. 1(d), 4(d), and 7(c)]. Other simulation parameters used

to obtain other network states shown throughout this paper

are indicated with a ⊛ marker in Table IV, and the changed

parameters are given in the corresponding figure captions. The

same marker always denotes the same parameter combination

across figure panels. The tables distinguish between network

properties and parameters valid for both spiking- and rate-

neuron models and those specific to only one neuron model.

Irrespective of the choice of neuron model (rate versus spik-

ing), the neuron parameters are shared between both neuron

populations.

The number of excitatory neurons NE in our network is four

times larger than the number of inhibitory neurons NI [138].

All neurons are positioned on a grid along a one-dimensional

path of perimeter L with a space constant of �x = L/NI. At

each grid position x ∈ [0, L − �x], there is one inhibitory

neuron and four excitatory neurons. The network activity in

Figs. 1, 4, and 7 is shown for all inhibitory neurons, but only

for one excitatory neuron at each grid position. Connections

between neurons are drawn according to a distance-dependent

rule with periodic boundary conditions (a “ring” network)

using the NEST Topology module. The number of incoming

connections, the in-degree K{E,I}, is proportional to the popu-

lation size of the presynaptic population, assuming an overall

connection probability of 10%. The width of the boxcar-

shaped distance-dependent profile R{E,I} depends on the presy-

naptic population alone. Within a distance of R{E,I} around

each postsynaptic neuron, potential presynaptic neurons are

selected at random and connections are established until the

prescribed in-degree is reached. Potential presynaptic neurons

within this distance are picked at random and connections are

established until the fixed in-degree is reached. Multiple con-

nections between the same pair of neurons termed multapses

are allowed, but self-connections (autapses) are prohibited.

The random component of this connection algorithm may lead

to a slight asymmetry in the finite-sized network that may

cause a small drift visible for example in the activity that

was theoretically predicted to be a stationary Turing pattern

[Fig. 4(b)]. For demonstration, Fig. 9 shows the simulated

activity of a rate-neuron network built with a fully symmetric

connection routine and otherwise the same parameter combi-

nation as used in Fig. 4(b). Even over long time spans, no drift

is visible.

The leaky integrate-and-fire model with exponential post-

synaptic currents is implemented in NEST under the name

iaf_psc_exp. The neuron parameters are the same as in

the microcircuit model of [139] with the difference that our

membrane time constant τm is half of theirs and that we here

omit the refractory period τref , although our results generalize

to a nonzero τref . An excitatory and an inhibitory Poisson

generator provide external input to all neurons. Their rates

ν{E,I},ext are determined according to Eq. (F2) for fixing the

working point (µ, σ ).

The dynamics of rate-based units in NEST is specified

as stochastic differential equations using the Itô convention

[110], except that we here set the stochasticity (the variance

of the input) to zero. We use the neuron model tanh_ipn,

which employs a hyperbolic tangent as a gain function.

Simulations are run for a simulation time Tsim with a

temporal resolution of dt . During rate simulations, the instan-

taneous rate is recorded once per millisecond. Our raster plots

from simulations of the spiking model and the image plots

from simulation of the rate model show the network activity

from all simulated neurons after a start-up transient Ttrans.

APPENDIX I: SOFTWARE AND IMPLEMENTATION

Spiking- and rate-neuron network simulations were imple-

mented in NEST v2.18.0 [111] and PYTHON v3.6.9. Postpro-

cessing and plotting relied on PYTHON with NUMPY v1.16.4,

SCIPY v1.2.1, and MATPLOTLIB v3.0.2.
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TABLE II. Summary of network models following the guidelines of Nordlie et al. [136]. Separation between nonlinear spiking and rate

neurons as used in NEST simulations.

MODEL SUMMARY

Populations Excitatory (E), inhibitory (I)

Topology Ring network: Neurons positioned equally spaced on one-dimensional domain of length L; periodic

boundary conditions

Connectivity Random convergent connections with fixed in-degree, distance-dependent boxcar-shaped spatial profiles

realized with cutoff masks

Spiking model

Neuron model Leaky integrate-and-fire (LIF), fixed threshold, absolute refractory time

Synapse model Static weights and delays, exponentially shaped postsynaptic currents

Input Independent fixed-rate Poisson spike trains to all neurons (excitatory and inhibitory Poisson sources)

Measurement Spike activity

Rate model

Neuron model Rate neuron with tanh gain function

Synapse model Delayed rate connection

Input None

Measurement Activity

TABLE III. Description of network models. Separation between nonlinear spiking and rate neurons as used in NEST simulations.

NETWORK MODELS

Distance-dependent connectivity Neural units j ∈ X at location x j and i ∈ Y at xi in pre- and postsynaptic populations

X and Y , respectively.

Displacement between units i and j:

ri j = xi − x j

Boxcar-shaped spatial profile with width R and Heaviside function �:

p(ri j ) = 1

2R
�(R − |ri j |)

Spiking model

Subthreshold dynamics If t > t∗ + τref

dV

dt
= −V −EL

τm
+ Isyn (t )

Cm

Isyn(t ) =
∑

j J jIPSC(t − t∗
j − d )

with connection strength J j , presynaptic spike time t∗
j , and conduction delay d

IPSC(t ) = e−t/τs�(t ) with Heaviside function �

else

V (t ) = Vr

Spiking If V (t−) < Vθ ∧ V (t+) � Vθ

(1) set t∗ = t

(2) emit spike with time stamp t∗

(3) reset V (t ) = Vr

Rate model

Differential equation τ ∂u

∂t
(t ) = −u(t ) +

∑
j=1 w jψ (u j (t − d )) with the nonlinearity ψ (u) = tanh (u)
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TABLE IV. Simulation and network parameters. Parameters according to setting for wave trains as shown in Figs. 1(d), 4(d), and 7(c)

(black star marker). Deviant parameters are given in the captions of the respective figures and indicated by different markers.

A: GLOBAL SIMULATION PARAMETERS

Symbol Value Description

Tsim 450 ms Simulation duration

Ttrans 250 ms Start-up transient

dt 0.1 ms Temporal resolution

B: POPULATIONS AND EXTERNAL INPUT

Symbol Value Description

NE 4000 Population size of excitatory neurons

NI 1000 Population size of inhibitory neurons

L 1 mm Domain length

Spiking model

µ∗ 10 mV Mean input relative to resting potential

σ ∗ 10 mV Variance of input relative to resting potential

νE,ext 96 463 Hz ⊛ Excitatory external rate (by fixing working point)

νI,ext 15 958 Hz ⊛ Inhibitory external rate (by fixing working point)

C: CONNECTION PARAMETERS

Symbol Value Description

RE 0.2 mm ⊛ Profile width of excitatory neurons

RI 0.07 mm ⊛ Profile width of inhibitory neurons

d 3 ms ⊛ Delay

Spiking model

KE 400 In-degree from excitatory neurons

γ 0.25 Relative in-degree, γ = KI/KE

J ′
E 87.8 pA ⊛ Reference synaptic strength

g 5 ⊛ Relative synaptic strength, g = −JI/JE

Rate model

wE 2.73 ⊛ Excitatory weight (by parameter mapping)

wI −3.42 ⊛ Inhibitory weight (by parameter mapping)

D: NEURON MODEL

Symbol Value Description

Spiking model

Cm 250 pF Membrane capacitance

τm 5 ms Membrane time constant

EL −65 mV Resting potential

Vθ −50 mV Firing threshold

Vr −65 mV Reset potential

τref 0 ms Absolute refractory period

τs 0.5 ms Postsynaptic current time constant

Rate model

τ 1.94 ms Time constant (by parameter mapping)
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