001     875436
005     20230426083219.0
024 7 _ |a 10.1103/PhysRevB.101.184109
|2 doi
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1050-2947
|2 ISSN
024 7 _ |a 1094-1622
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1538-4489
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9950
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 2128/24944
|2 Handle
024 7 _ |a WOS:000531731600002
|2 WOS
037 _ _ |a FZJ-2020-02031
082 _ _ |a 530
100 1 _ |a Barthel, Juri
|0 P:(DE-Juel1)130525
|b 0
|e Corresponding author
245 _ _ |a Angular dependence of fast-electron scattering from materials
260 _ _ |a Woodbury, NY
|c 2020
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1597133261_30814
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Angular resolved scanning transmission electron microscopy is an important tool for investigating the properties of materials. However, several recent studies have observed appreciable discrepancies in the angular scattering distribution between experiment and theory. In this paper we discuss a general approach to low-loss inelastic scattering which, when incorporated in the simulations, resolves this problem and also closely reproduces experimental data taken over an extended angular range. We also explore the role of ionic bonding, temperature factors, amorphous layers on the surfaces of the specimen, and static displacements of atoms on the angular scattering distribution. The incorporation of low-loss inelastic scattering in simulations will improve the quantitative usefulness of techniques such as low-angle annular dark-field imaging and position-averaged convergent beam electron diffraction, especially for thicker specimens.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
536 _ _ |a JUMPA - Jülich-University of Melbourne Postgraduate Academy (FAQ 151018 SA)
|0 G:(DE-Juel-1)FAQ 151018 SA
|c FAQ 151018 SA
|x 1
542 _ _ |i 2020-05-12
|2 Crossref
|u https://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Cattaneo, Mauricio
|0 P:(DE-Juel1)177854
|b 1
700 1 _ |a Mendis, Budhika G.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Findlay, Scott D.
|0 0000-0003-4862-4827
|b 3
700 1 _ |a Allen, Leslie J.
|0 P:(DE-HGF)0
|b 4
773 1 8 |a 10.1103/physrevb.101.184109
|b American Physical Society (APS)
|d 2020-05-12
|n 18
|p 184109
|3 journal-article
|2 Crossref
|t Physical Review B
|v 101
|y 2020
|x 2469-9950
773 _ _ |a 10.1103/PhysRevB.101.184109
|g Vol. 101, no. 18, p. 184109
|0 PERI:(DE-600)2844160-6
|n 18
|p 184109
|t Physical review / B
|v 101
|y 2020
|x 2469-9950
856 4 _ |u https://juser.fz-juelich.de/record/875436/files/PhysRevB.101.184109.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/875436/files/PhysRevB.101.184109.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:875436
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130525
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)177854
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 0000-0003-4862-4827
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-2-20170209
|k ER-C-2
|l Materialwissenschaft u. Werkstofftechnik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ER-C-2-20170209
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
999 C 5 |a 10.1007/978-1-4419-7200-2
|1 S. J. Pennycook
|2 Crossref
|9 -- missing cx lookup --
|y 2011
999 C 5 |a 10.1038/336565a0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.100.206101
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.82.104103
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.ultramic.2014.08.002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1017/S1431927619000497
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1649463
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.ultramic.2006.04.019
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.ultramic.2010.04.004
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.100.025503
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/srep37146
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.ultramic.2019.112816
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.107.450
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/978-1-4419-9583-4
|1 R. F. Egerton
|2 Crossref
|9 -- missing cx lookup --
|y 2011
999 C 5 |1 J. C. H. Spence
|y 1989
|2 Crossref
|t High-Resolution Transmission Electron Microscopy: and Associated Techniques
|o J. C. H. Spence High-Resolution Transmission Electron Microscopy: and Associated Techniques 1989
999 C 5 |a 10.1103/PhysRevLett.40.1293
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.ultramic.2018.06.003
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.ultramic.2014.10.011
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.54.12873
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JPSJ.11.112
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.17815/jlsrf-2-67
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.ultramic.2019.112917
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.17815/jlsrf-2-105
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.ultramic.2017.05.001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0304-3991(00)00121-2
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1415766
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1107/S0108767393013200
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1107/S0108767391004804
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/978-1-4419-6533-2
|1 E. J. Kirkland
|2 Crossref
|9 -- missing cx lookup --
|y 2010
999 C 5 |a 10.1107/S0108768195003752
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.ultramic.2009.10.001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.ultramic.2018.03.004
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.ultramic.2019.112921
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.ultramic.2017.07.002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.4823704
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21