000875437 001__ 875437
000875437 005__ 20210130004931.0
000875437 0247_ $$2doi$$a10.3762/bjnano.11.62
000875437 0247_ $$2Handle$$a2128/24933
000875437 0247_ $$2altmetric$$aaltmetric:81796709
000875437 0247_ $$2pmid$$apmid:32509491
000875437 0247_ $$2WOS$$aWOS:000531472700001
000875437 037__ $$aFZJ-2020-02032
000875437 082__ $$a620
000875437 1001_ $$00000-0001-6236-4385$$aÖztürk, Secil$$b0
000875437 245__ $$aNickel nanoparticles supported on a covalent triazine framework as electrocatalyst for oxygen evolution reaction and oxygen reduction reactions
000875437 260__ $$aFrankfurt, M.$$bBeilstein-Institut zur Förderung der Chemischen Wissenschaften$$c2020
000875437 3367_ $$2DRIVER$$aarticle
000875437 3367_ $$2DataCite$$aOutput Types/Journal article
000875437 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1591095196_4524
000875437 3367_ $$2BibTeX$$aARTICLE
000875437 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000875437 3367_ $$00$$2EndNote$$aJournal Article
000875437 520__ $$aCovalent triazine frameworks (CTFs) are little investigated, albeit they are promising candidates for electrocatalysis, especially for the oxygen evolution reaction (OER). In this work, nickel nanoparticles (from Ni(COD)2) were supported on CTF-1 materials, which were synthesized from 1,4-dicyanobenzene at 400 °C and 600 °C by the ionothermal method. CTF-1-600 and Ni/CTF-1-600 show high catalytic activity towards OER and a clear activity for the electrochemical oxygen reduction reaction (ORR). Ni/CTF-1-600 requires 374 mV overpotential in OER to reach 10 mA/cm2, which outperforms the benchmark RuO2 catalyst, which requires 403 mV under the same conditions. Ni/CTF-1-600 displays an OER catalytic activity comparable with many nickel-based electrocatalysts and is a potential candidate for OER. The same Ni/CTF-1-600 material shows a half-wave potential of 0.775 V for ORR, which is slightly lower than that of commercial Pt/C (0.890 V). Additionally, after accelerated durability tests of 2000 cycles, the material showed only a slight decrease in activity towards both OER and ORR, demonstrating its superior stability.
000875437 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000875437 588__ $$aDataset connected to CrossRef
000875437 7001_ $$0P:(DE-HGF)0$$aXiao, Yu-Xuan$$b1
000875437 7001_ $$0P:(DE-HGF)0$$aDietrich, Dennis$$b2
000875437 7001_ $$00000-0002-3858-6460$$aGiesen, Beatriz$$b3
000875437 7001_ $$0P:(DE-Juel1)130525$$aBarthel, Juri$$b4
000875437 7001_ $$0P:(DE-HGF)0$$aYing, Jie$$b5
000875437 7001_ $$0P:(DE-Juel1)165181$$aYang, Xiaosheng$$b6
000875437 7001_ $$0P:(DE-HGF)0$$aJaniak, Christoph$$b7$$eCorresponding author
000875437 773__ $$0PERI:(DE-600)2583584-1$$a10.3762/bjnano.11.62$$gVol. 11, p. 770 - 781$$p770 - 781$$tBeilstein journal of nanotechnology$$v11$$x2190-4286$$y2020
000875437 8564_ $$uhttps://juser.fz-juelich.de/record/875437/files/2190-4286-11-62.pdf$$yOpenAccess
000875437 8564_ $$uhttps://juser.fz-juelich.de/record/875437/files/2190-4286-11-62.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000875437 909CO $$ooai:juser.fz-juelich.de:875437$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000875437 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130525$$aForschungszentrum Jülich$$b4$$kFZJ
000875437 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165181$$aForschungszentrum Jülich$$b6$$kFZJ
000875437 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000875437 9141_ $$y2020
000875437 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000875437 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000875437 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBEILSTEIN J NANOTECH : 2017
000875437 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000875437 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000875437 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000875437 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000875437 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000875437 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000875437 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000875437 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000875437 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000875437 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000875437 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000875437 920__ $$lyes
000875437 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x0
000875437 980__ $$ajournal
000875437 980__ $$aVDB
000875437 980__ $$aUNRESTRICTED
000875437 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000875437 9801_ $$aFullTexts