000875439 001__ 875439
000875439 005__ 20210130004932.0
000875439 0247_ $$2doi$$a10.1002/adhm.201901820
000875439 0247_ $$2ISSN$$a2192-2640
000875439 0247_ $$2ISSN$$a2192-2659
000875439 0247_ $$2Handle$$a2128/25111
000875439 0247_ $$2altmetric$$aaltmetric:81816420
000875439 0247_ $$2pmid$$apmid:32378355
000875439 0247_ $$2WOS$$aWOS:000530631000001
000875439 037__ $$aFZJ-2020-02034
000875439 041__ $$aEnglish
000875439 082__ $$a610
000875439 1001_ $$0P:(DE-HGF)0$$aStengelin, Elena$$b0
000875439 245__ $$aBone Scaffolds Based on Degradable Vaterite/PEG‐Composite Microgels
000875439 260__ $$aWeinheim$$bWiley-VCH$$c2020
000875439 3367_ $$2DRIVER$$aarticle
000875439 3367_ $$2DataCite$$aOutput Types/Journal article
000875439 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1592764808_26605
000875439 3367_ $$2BibTeX$$aARTICLE
000875439 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000875439 3367_ $$00$$2EndNote$$aJournal Article
000875439 520__ $$aVaterite, a metastable modification of calcium carbonate, embedded in a flexible microgel packaging with adjustable mechanical properties, functionality, and biocompatibility, provides a powerful scaffolding for bone tissue regeneration, as it is easily convertible to bone‐like hydroxyapatite (HA). In this study, the synthesis and physical analysis of a packaging material to encapsulate vaterite particles and osteoblast cells into monodisperse, sub‐millimeter‐sized microgels, is described whereby a systematic approach is used to tailor the microgel properties. The size and shape of the microgels is controlled via droplet‐based microfluidics. Key requirements for the polymer system, such as absence of cytotoxicity as well as biocompatibility and biodegradability, are accomplished with functionalized poly(ethylene glycol) (PEG), which reacts in a cytocompatible thiol–ene Michael addition. On a mesoscopic level, the microgel stiffness and gelation times are adjusted to obtain high cellular viabilities. The co‐encapsulation of living cells provides i) an in vitro platform for the study of cellular metabolic processes which can be applied to bone formation and ii) an in vitro foundation for novel tissue‐regenerative therapies. Finally, the degradability of the microgels at physiological conditions caused by hydrolysis‐sensitive ester groups in the polymer network is examined.
000875439 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000875439 588__ $$aDataset connected to CrossRef
000875439 7001_ $$aKuzmina, Alena$$b1
000875439 7001_ $$0P:(DE-Juel1)128800$$aBeltramo, Guillermo L.$$b2
000875439 7001_ $$aKoziol, Martha F.$$b3
000875439 7001_ $$aBesch, Laura$$b4
000875439 7001_ $$aSchröder, Romina$$b5
000875439 7001_ $$00000-0003-2482-9705$$aUnger, Ronald E.$$b6
000875439 7001_ $$aTremel, Wolfgang$$b7
000875439 7001_ $$00000-0002-5152-1207$$aSeiffert, Sebastian$$b8$$eCorresponding author
000875439 773__ $$0PERI:(DE-600)2645585-7$$a10.1002/adhm.201901820$$gp. 1901820 -$$n11$$p1901820$$tAdvanced healthcare materials$$v9$$x2192-2659$$y2020
000875439 8564_ $$uhttps://juser.fz-juelich.de/record/875439/files/adhm.201901820.pdf$$yOpenAccess
000875439 8564_ $$uhttps://juser.fz-juelich.de/record/875439/files/adhm.201901820.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000875439 909CO $$ooai:juser.fz-juelich.de:875439$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000875439 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128800$$aForschungszentrum Jülich$$b2$$kFZJ
000875439 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000875439 9141_ $$y2020
000875439 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000875439 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000875439 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000875439 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV HEALTHC MATER : 2017
000875439 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000875439 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000875439 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000875439 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bADV HEALTHC MATER : 2017
000875439 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000875439 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000875439 920__ $$lyes
000875439 9201_ $$0I:(DE-Juel1)IBI-2-20200312$$kIBI-2$$lMechanobiologie$$x0
000875439 980__ $$ajournal
000875439 980__ $$aVDB
000875439 980__ $$aUNRESTRICTED
000875439 980__ $$aI:(DE-Juel1)IBI-2-20200312
000875439 9801_ $$aFullTexts