
Chapter 1

New Numerical Results for the Optimization of

Interior Neumann Eigenvalues

D. Abele and A. Kleefeld

Abstract We present new numerical results for shape optimization problems of in-

terior Neumann eigenvalues. This field is not well understood from a theoretical

standpoint. The existence of shape maximizers is not proven beyond the first two

eigenvalues, so we study the problem numerically. We describe a method to com-

pute the eigenvalues for a given shape that combines the boundary element method

with an algorithm for nonlinear eigenvalues. As numerical optimization requires

many such evaluations, we put a focus on the efficiency of the method and the im-

plemented routine. The method is well suited for parallelization. Using the resulting

fast routines and a specialized parametrization of the shapes, we found improved

maximums for several eigenvalues.

1.1 Introduction

We will discuss the optimization of interior Neumann eigenvalues with respect to

the shape of the domain. To state the problem precisely, consider an open, possibly

disconnected set Ω ∈ IR2 with smooth boundary ∂Ω . The normal onto the boundary

at point x∈ ∂Ω directed into the exterior is ν := ν(x). Interior Neumann eigenvalues

are values λ = κ2 ∈ IR for which the boundary value problem (BVP)

∆u+κ2u = 0 in Ω (1.1a)

∂u

∂ν
= 0 on ∂Ω (1.1b)

has non-trivial solutions. Precisely, equation (1.1a) is the Helmholtz equation with

wavenumber κ in the interior of Ω and equation (1.1b) is the homogeneous Neu-

mann boundary condition. The problem arises in the study of acoustic scattering
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[CoKr13]. It is well-known that the eigenvalues are discrete, real and nonnegative:

0 = λ0 ≤ λ1 ≤ λ2 ≤ . . . .

The eigenvalues depend on the domain. The optimization problem for the k-th eigen-

value is
max

Ω
{λk(Ω)}

s.t. |Ω |= 1

with |Ω | denoting the area of the domain. The area must be constrained as the eigen-

values are inversely proportional to the area. So the goal is to find the shape of the

domain that maximizes λk for k > 0 among all domains of constant area. The eigen-

value λ0, for which (1.1) has only constant solutions, is ignored here as it is always

zero.

There has been some theoretical and numerical work in this area. Szegö and a

little later Weinberger have shown that the first eigenvalue is maximized by a disk

[Sz54, We56]. The second eigenvalue is maximized by the union of two disjoint

disks of the same size [GiNaPo09]. It is so far unknown if maximizers for higher

eigenvalues exist. However, it has been shown that disjoint unions of disks do not

maximize all eigenvalues [PoRo10], so there is room for exploration. Recent numer-

ical results suggest that maximizers for the first ten eigenvalues exist and follow a

certain system [AnOu17, AnFr12]. That system has been exploited to get more pre-

cise results for some eigenvalues [Kl19]. Those numerical results are summarized

in Table 1.1.

k [AnFr12] [AnOu17] [Kl19]

1 – 10.66 (2) –

2 – 21.28 (4) –

3 32.79 (3) 32.90 (3) 32.9018 (3)

4 43.43 (5) 43.86 (3) 43.8694 (3)

5 54.08 (7) 55.17 (3) –

6 67.04 (4) 67.33 (4) –

7 77.68 (6) 77.99 (6) –

8 89.22 (4) 89.38 (4) –

9 101.73 (4) 101.83 (4) –

10 113.86 (5) 114.16 (5) –

Table 1.1 Recent results for the numerical optimization of interior Neumann eigenvalue λk. The

value in parantheses is the multiplicity.

Contribution

This work expands on the idea of [Kl19]. We show that the parametrization of shapes

presented there is not very successful beyond the fourth eigenvalue. By introducing
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additional parameters we managed to get improved optimization results for some

eigenvalues, while still using fewer parameters than a general Fourier series ap-

proach. As the performance of the eigenvalue solver directly affects the achievable

precision, we discuss the employed methods and the implementation in greater de-

tail and explain some adaptations that make optimization feasible on a larger scale

than before: more eigenvalues, more degrees of freedom and greater precision. In

particular, we developed a strongly scaling parallelization scheme.

Outline

In Section 1.2 we present the method of computing the eigenvalues and its im-

plementation. The numerical methods - boundary element method to discretize the

BVP and the contour integral method of Beyn to solve the nonlinear eigenvalue

problem - are discussed in detail in Sections 1.2.1 and 1.2.2. That discussion moti-

vates the parallelization scheme that is explained in Section 1.2.3. Section 1.3 is ded-

icated to the actual optimization. After a quick summary of the shape parametriza-

tion of [Kl19] we present the disappointing results of using that parametrization in

the maximization of further eigenvalues. We then extend the parameter space and

show the much improved results. Finally we will give our conclusion and a small

outlook in Section 1.4.

1.2 Computation of Eigenvalues

The process to compute eigenvalues is the same as in [Kl19] with the exception of

parallelization and some other important modifications that have major implications

on the required computational effort. First, the BVP (1.1) is discretized using the

boundary element method. The resulting homogeneous linear system is a nonlinear

eigenvalue problem that is solved with the method of Beyn. To motivate the paral-

lelization, we will give a quick summary of these methods while the modifications

are highlighted and discussed in detail.

1.2.1 The Boundary Element Method

The theory of this method is covered in [CoKr83]. Using a single layer potential

ansatz, the BVP (1.1) is first converted into the integral equation of the second kind

1

2
ψ(x)+

∫

∂Ω

∂

∂ν(x)
Φκ(x,y)ψ(y)ds(y) = 0 , x ∈ ∂Ω (1.2)



4 D. Abele and A. Kleefeld

whose solution ψ ∈ C(∂Ω) is the density of the solution of the BVP. The ker-

nel Φκ(x,y) := i
4
H

(1)
0 (κ ‖x− y‖) with H

(1)
0 the Hankel function of the first kind

of order zero is the fundamental solution of the PDE (1.1a). We choose n points

xi, i = 1, . . . ,n on the boundary that form n/2 boundary elements with two end-

points and one midpoint. The integral equation (1.2) is discretized using piecewise

quadratic interpolation of ψ and the boundary. Collocation results in a homogeneous

linear system
(

1

2
I+M(κ)

)

︸ ︷︷ ︸

T(κ)

~ψ = 0 (1.3)

with system matrix T(κ) and identity matrix I∈Cn×n. The entries of matrix M(κ)∈
Cn×n are integrals over the quadratic boundary elements of the form

∫ 1

0

∂

∂νi,k
Φκ(xi,gk(t))L j(t)

∥
∥g′k(t)

∥
∥ dt (1.4)

with xi the collocation point, k = 1, . . . ,n/2 the index of the boundary element,

gk : [0,1] ∋ t 7→ L1(t)x2k−1 +L2(t)x2k +L3(t)x2k+1 the quadratic interpolation poly-

nomial of the k-th boundary element, νi,k some approximation of the normal onto

the boundary at xi that may depend on the boundary element (see below), and

L j, j = 1,2,3 the j-th quadratic Lagrange basis polynomial. The integral describes

the influence of the j-th point of boundary element k on collocation point xi, thus

index i is the row index of the matrix entry and indices j and k depend on the col-

umn index. Elements in odd indexed rows correspond to the endpoints of boundary

elements (x1,x3, . . .) and as such are the sum of two such integrals with different j,k
as they belong to two different boundary elements. The kernel

∂

∂νi,k
Φκ(x,y) = − iκ

4
H

(1)
1 (κ ‖x− y‖) 1

‖x− y‖
〈
x− y,νi,k

〉
(1.5)

has a singularity at x = y the type of which depends on the choice of νi,k.

Handling of the Singular Kernel

The singularity of the kernel (1.5) must be handled correctly when evaluating the in-

tegrals (1.4) numerically. Note first that there is only a singularity in integral (1.4) if

collocation point xi is part of boundary element k, i.e. gk(t0) = xi for some t0 ∈ [0,1].
Otherwise the integrand is continuous and does not present any specific challenge

to numerical quadrature. Let us now assume that there is a singularity in the k-th

boundary element. We will examine the limit of the kernel by isolating the singular

part. First the Hankel function is replaced by H
(1)
1 (z) = J1(z)+ iY1(z) where J1 and

Y1 are the Bessel functions of the first and second kind of order one. As z → 0, J1(z)
tends to zero, so we have
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lim
y→x

(

− iκ

4
H

(1)
1 (κ ‖x− y‖)

〈
x− y

‖x− y‖ ,νi,k

〉)

= lim
y→x

(
κ

4
Y1(κ ‖x− y‖)

〈
x− y

‖x− y‖ ,νi,k

〉)

. (1.6)

We replace Y1 with its power series expansion

Y1(z) =− 2

πz
+

2

π
ln(

1

2
z)J1(z)

+
1

π

∞

∑
k=0

(−1)k

k!(k+1)!
(ψ0(k+1)+ψ0(k+2))

(
1

2
z

)2k+1

with ψ0 the digamma function. Of this expansion only the first summand is infinite.

The remaining summands again tend to zero as z → 0. This reduces (1.6) to

lim
y→x

(

− 1

2π

〈

x− y

‖x− y‖2
,νi,k

〉)

. (1.7)

The limit does not exist for any general vectors x, y, and νi,k, so further constraints

are applied. The points x and y lie on the graph of gk with x = g(t0). By Taylor’s

theorem there exists a function h : IR → IR2 with limt→t0 h(t) = 0 such that

gk(t) = gk(t0)+g′k(t0)(t − t0)+
1

2
g′′k (t0)(t − t0)

2 +h(t)(t − t0)
2 .

Inserting this into (1.7), the remainder term vanishes as it tends to zero. Let νi,k be

the normal vector onto gk at t0. Then, the linear term vanishes as g′k(t0) is the tangent

onto gk at t0 and
〈
g′k(t0),νi,k

〉
= 0. The constant terms cancel and only the quadratic

term remains. Hence, we are left with

lim
t→t0

(

1

4π

〈

g′′k (t0)(t − t0)
2

‖gk(t0)−gk(t)‖2
,νi,k

〉)

.

The difference quotient tends to the derivative and we find the result

1

4π

〈

g′′k (t0)
∥
∥g′k(t0)

∥
∥2

,νi,k

〉

.

So under the assumptions from the beginning that xi is part of element k, the

singularity in the kernel (1.5) is removable and the integrals (1.4) are proper if
〈
g′k(t0),νi,k

〉
= 0. Note that the existence of the integral in (1.2) can be shown

with the same argument. In [Kl19], the normal onto the exact boundary, which is

generally not normal to gk, was used in the numeric computation. This results in

infinite singularities that are difficult to handle. Here, we will use normals onto

the interpolation polynomials. We denote the normal onto gk at t0 as g⊥k (t0). For

even indices i (which correspond to the midpoint of element i/2), we always use
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g⊥
i/2
(1/2). For odd indices i, the point xi is part of two boundary elements and we

have g(i+1)/2−1(1) = g(i+1)/2(0) = xi. We have a choice of two different normals at

xi. When we integrate over element (i+ 1)/2− 1, we need to choose g⊥(i+1)/2−1
(1)

and analogously for element (i+ 1)/2. Otherwise the choice is arbitrary, so we al-

ternate to avoid introducing bias. In summary

νi,k =







g⊥
i/2
( 1

2
) if i mod 2 = 0

g⊥(i+1)/2−1
(1) if i mod 2 = 1 and k mod 2 = ( i+1

2
−1) mod 2

g⊥(i+1)/2
(0) if i mod 2 = 1 and k mod 2 = i+1

2
mod 2

.

Now the integrals can be evaluated without any special handling of the singular-

ity. This makes the quadrature less expensive. We have used a routine that uses the

15 point Gauss-Kronrod rule to solve the integrals to within a relative and absolute

tolerance of 10−10.

Exploiting Symmetries of the Domain

The shapes considered in this work are all symmetric to some degree. This fact can

be exploited to reduce the required work. In the integrand of the integrals (1.4) with

kernel (1.5), the collocation point xi, normal νi,k, and integration point y = gk(t)
exclusively exist in norms and scalar products. Those are invariant under rotation:

‖Rv‖= ‖v‖
〈Rv,Rw〉= 〈v,w〉

for all v,w∈ IR2 and all rotation transformations R. Under reflection, scalar products

switch signs but this is compensated by the switching of the integration bounds, so

the resulting integral is again invariant. Thus, if xa is the image of xb and xc is the

image of xd under reflection or rotation, then M(κ)ac = M(κ)bd . For this to work, n

must be divisible by two times the degree of symmetry and the boundary elements

must have the same symmetries as the shape itself (Fig. 1.1).

As an example for what effect this has on matrix M(κ) we will discuss the sus-

pected shape maximizer of λ3, which has degree of symmetry six (three rotations

times two for reflection symmetry, Fig. 1.1). For simplicity, we assume that the first

collocation point x1 lies on a symmetry axis. Threefold rotational symmetry and the

corresponding shifting of rows and columns by n/3 leads to the matrix having 3×3

block structure

M(κ) =





A B C

C A B

B C A





with some blocks A,B,C ∈ Cn/3×n/3 that each have to be evaluated only once, re-

ducing the required work to a third. Reflection symmetry and the corresponding

reflection of both rows and columns of the matrix leads to the matrix being centrally
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xaxb

xc

xd xe

x f

Fig. 1.1 Suspected shape maximizer of λ3, discretized using n = 24 points that form 12 bound-

ary elements. Long ticks mark the endpoints, short ticks the midpoints. The shape has degree of

symmetry six, three rotations times two for reflection symmetry. The discretization parameter n is

divisible by 12, two times the degree of symmetry. The boundary elements have the same symmetry

as the shape itself. The points xa, xb, xc, xd , xe, and x f are images of each other.

symmetric with respect to the entry at row and column n/2+ 1, e.g. for n = 4 the

matrix 





a e b e

f g h i

c j d j

f i h g







is point symmetric with respect to entry (3,3) using periodic indices. Note that this

example is just for illustration as n = 4 would not be valid for degree of symmetry

six due to the restrictions mentioned above. Each value repeats twice except where

row index and column index both correspond to fixed points of the reflection, i.e. to

points that lie on the symmetry axis. As the boundary elements are symmetric and x1

lies on the axis, so does xn/2+1. In our example, values of entries (1,1), (1,n/2+1),
(n/2+ 1,1), and (n/2+ 1,n/2+ 1) (or a, b, c, and d) do not repeat. Rotation and

reflection symmetry combine so that all values repeat six times, except for the fixed

points of reflection which only repeat three times.

Rotation symmetry of degree r reduces the number of matrix entries that must

be evaluated to n2/r. Reflection symmetry further reduces the amount to n2/2r+4.

Except for infinitely symmetric shapes like a circle we usually have n ≫ r, so the

complexity of the method with respect to the number of collocation points does not

change, but the total amount of work is reduced by a factor approaching 2r.

1.2.2 Beyn’s Contour Integral Method

The eigenvalues of the nonlinear eigenvalue problem (1.3) are computed using the

contour integral method W.-J. Beyn presented in [Be12]. For simplicity, we assume
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here that all eigenvalues are simple, but the method works identically for multiple

eigenvalues. Given an operator T : Γ → Cn×n that is holomorphic on a domain Γ ⊂
C and a closed contour C ⊂ Γ with its interior int(C)⊂ Γ , the method computes all

eigenvalues of T in the interior int(C).
Let κi, i = 1, . . . ,k be the eigenvalues of T in the interior int(C) and vi and wi the

corresponding left and right eigenvectors that are normalized so that wH
i T′(κi)vi = 1.

Then the equation

1

2πi

∫

C
f (κ)T(κ)−1 dκ =

k

∑
i=1

f (κi)viw
H
i (1.8)

holds for all holomorphic functions f : Γ →C [Be12, Theorem 2.9]. We additionally

assume that k < n, which is sufficient for our purposes. Beyn describes an extension

to the method for k ≥ n. Applying (1.8) to the functions f0(κ) = 1 and f1(κ) = κ
and multiplying with a random matrix Z ∈ Cn×m from the right yields two equations

A0 =
∫

C
T(κ)−1Zdκ = VWHZ (1.9a)

A1 =
∫

C
κT(κ)−1Zdκ = VKWHZ (1.9b)

with V = (v1, . . . ,vm), W = (w1, . . . ,wm), and K = diag(κ1, . . . ,κm). The dimension

m is an initial guess for k with k ≤ m ≤ n. Therefore, the matrix Z reduces the

dimensions of A0 and A1 without reducing the rank k. Singular value decomposition

(SVD) of A0 in reduced form yields

A0 = V0S0WH
0

with matrices V0 ∈ Cn×k and W0 ∈ Cm×k and the diagonal matrix of singular values

S0 = diag(σ1, . . . ,σk). With this, the correctness of the initial guess m can be con-

firmed by comparing it with the actual computed rank. In case the check is failed,

the method is started again with a higher guess m. Finally a matrix

B = VH
0 A1W0S−1

0 = QKQ−1

is computed. The matrix is diagonalizable by construction with Q = VH
0 V and has

eigenvalues κi, i = 1, . . . ,k. Thus, the nonlinear eigenvalue problem is converted

into a linear eigenvalue problem. If the eigenvalues are not simple, the method

works identically but K will have Jordan normal form. The stucture of multiplic-

ity is preserved. We have enough knowledge about the location of eigenvalues to

make the choice of C trivial. All that is left is the discretization of the contour in-

tegrals (1.9). Let the contour be described by a smooth mapping h : [0,2π] → C

with h(0) = h(2π), e.g. the simplest contour, a circle with center µ and radius r,

is described by h(t) = µ + reit . The interval [0,2π] is partitioned by the equally

spaced nodes t j = 2π j/N, j = 1, . . . ,N with N a chosen discretization parameter.
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The approximations

A0 ≈
1

Ni

N

∑
j=1

T(h(t j))
−1Zh′(t j) (1.10a)

A1 ≈
1

Ni

N

∑
j=1

h(t j)T(h(t j))
−1Zh′(t j) . (1.10b)

are obtained by transforming the integrals onto the partitioned interval and applying

the trapezoidal quadrature rule. Beyn shows that the error in the eigenvalues decays

exponentially with N [Be12, Corollary 4.8].

The operator T must be evaluated N times. This is by far the most expensive

part of the algorithm. As k is usually much smaller than n, the introduction of the

random matrix Z makes the matrices small enough so that the effort required for

linear algebra operations is small. While the solving of linear systems T(h(t j))
−1Z

is still noticeable, the other operations (SVD, solving the linear eigenvalue problem)

are completely negligible.

1.2.3 Parallelization

For optimization with many iterations, the eigenvalue solver is required to be fast.

The evaluation of both the matrix M(κ) and the contour integrals in Beyn’s method

are well suited for parallelization. This covers almost the entire computation. In

our implementation for n = 1152 and N = 48, almost 100% of the time is spent

on the evaluation of the contour integrals (1.10), of which the evaluation of M(κ)
requires 98.8% and solving the linear systems T(κ)−1Z requires 1.2%. Everything

else is completely negligible. While the exact gains that can be expected depend

on the implementation and the system, the principles outlined here are universal.

Most relevant for performance are the routines that evaluate the Hankel function

and perform quadrature. Our program is implemented in C, using GNU Scientific

Library (GSL) [Ga09] as a general framework and for quadrature specifically. For

the Hankel function we use the FORTRAN routine provided by Amos [Am86].

Each entry of the n×n matrix can be evaluated independently without any syn-

chronization or communication. Row cyclical distribution is a simple and effective

way to balance the workload (Fig. 1.2). Columns that correspond to an endpoint of a

boundary element require the evaluation of two integrals, whereas columns that cor-

respond to a midpoint require only one. Additionally, the time necessary to evaluate

a single integral depends strongly on the distance from the singularity of the ker-

nel, i.e. the diagonal. Row distribution removes both these imbalances. For shapes

less regular than a disk and collocation points that are not perfectly evenly spaced,

the number of collocation points that are close to the singularity varies smoothly

between rows. So the rows need to be distributed cyclically. Without any communi-

cation or synchronization and with 98.8 % of the computation parallelized, strong
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scaling is expected for this strategy. The implementation, e.g. using OpenMP, is

trivial.

0 20 40 60
0

20

40

60

Columns

R
o
w

s

0.20

0.40

0.60

0.80

1.00 ·10−4

ti
m

e
[s

]

Fig. 1.2 Time required to evaluate each entry of M(κ) for a domain with threefold rotational

symmetry. Vertical stripes correspond to alternating end- and midpoints of boundary elements.

The singularity of the kernel of the integral equation causes a band around the diagonal whose

boundary follows the shape of the domain.

Each of the N summands of the trapezoidal rule that approximates the contour

integrals in Beyn’s method can also be evaluated independently without any com-

munication except for one sum reduce operation at the end. In regards to workload

balancing, the time to evaluate T(κ) in our implementation depends mainly on the

sign of the imaginary part of wave number κ (Fig. 1.3). The integrals involving the

Hankel function are more expensive for Im(κ) < 0. The eigenvalues are real, so a

contour that is centered on the real axis is used. Cyclical distribution of summands

is generally solid, although not very flexible regarding the number of tasks. Some

tasks may end up with fewer summands from one half space than the other. The

parallelized part is slightly larger than for the first strategy as basically 100 % of the

computation is covered. This improves scaling compared to the first strategy. How-

ever, the parameter N is typically not very high (< 50) so the degree of parallelism

is severely constrained. It is advisable to employ both strategies, e.g. in a hybrid

(mixed shared memory and distributed memory) application. Our implementation

achieves a speedup of ~520 with 576 physical/1152 virtual cores on the JURECA

cluster [Ju18] which likely can be further improved. The time to evaluate the eigen-

values is reduced to below one second, which allows large scale optimization.

1.3 Optimization of Eigenvalues

Recall that the constrained optimization problem we are trying to solve is
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-1
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Fig. 1.3 Time required to evaluate T(κ) for different wave numbers κ . The evaluation of integrals

involving the Hankel function H
(1)
1 is significantly more expensive for arguments with negative

imaginary part. The singularity at the origin is of no concern as we are not interested in zero

eigenvalues.

max
Ω

{λk(Ω)}

s.t. |Ω |= 1
(1.11)

for some fixed k ∈ IN with |Ω | denoting the area of the domain Ω . By applying the

known relations

λk(aΩ) = a−2λk(Ω)

|aΩ |= a2 |Ω |

with aΩ denoting the homothety of Ω by the factor a, we can convert (1.11) into

the equivalent unconstrained problem

max
Ω

{λk |Ω |} .

In the numeric treatment, it is sufficient to consider connected domains. The

spectrum of a disconnected domain Ω1 ∪Ω2 with Ω1 ∩Ω2 = /0 is the ordered union

of the spectrums of the component domains Ω1 and Ω2. If the maximums λ ∗
i =

maxΩ{λi} and corresponding maximizers Ω ∗
i (connected or disconnected) for i =

1, . . . ,k−1 are known, then the maximum of λk over disconnected domains is

λ ∗
k = max

1≤i≤ n
2

{λ ∗
i +λ ∗

k−i} (1.12)

and the corresponding disconnected maximizer is

Ω ∗
k =

(√

λ ∗
j

λ ∗
j +λ ∗

k− j

Ω ∗
j

)

∪
(√

λ ∗
k− j

λ ∗
j +λ ∗

k− j

Ω ∗
k− j

)
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where j is the integer that maximizes (1.12). If the maximum over all domains is

greater than (1.12), then the maximizer must be connected [PoRo10].

In [Kl19], Kleefeld introduced equipotentials to parameterize the domain. They

are described by the implicit function

m

∑
i=1

1

‖x− pi‖2α
= c (1.13)

with m fixed base points pi and free parameters c and α . To match the shapes re-

ported in [AnOu17, Fig. 2], the base points are chosen so they form equilateral

triangles of side length
√

3/2, three points on one triangle to maximize λ3 and four

points on two triangles to maximize λ4 (see first row of Fig. 1.4). Points on the

boundary required by the boundary element method are generated by transforming

the equation into polar coordinates and using a root finding algorithm to compute

the radiuses ri for evenly spaced angles φi. The points (ri,φi) are then transformed

back into Cartesian coordinates. The area of the domain is computed to high accu-

racy by approximating the domain as a polygon with 100 ·n sides. With this method,

Kleefeld improved on the values found by Antunes and Oudet with the maximum

of λ3 to 32.9018 over 32.90 and the maximum of λ4 to 43.8694 over 43.86.

Fig. 1.4 Arrangement of base points for equipotentials to maximize λ3, λ4, λ5, and λ6. The points

form a regular triangular grid. A cross marks the origin and rotation center.

With the improvements for the method of computation presented above, we can

now try the scheme on the higher eigenvalues. Unless otherwise noted, we have used

discretization parameters n = 1152 and N = 48. Convergence experiments suggest

this is generally enough for six significant digits in the eigenvalues. To be safe, we

check the results of optimization with finer discretization. As the gradient of the ob-

jective function is not trivially computable, we use a routine provided by GSL that
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implements the Nelder-Mead simplex method. To avoid local maximums, we try

different starting values. For two parameters, it is possible to exhaustively probe the

parameter space to find good starting values. The extended, higher dimensional pa-

rameter space that is presented later is randomly probed instead. Simplex algorithms

are known to terminate prematurely even without the presence of local minimums.

So after the optimization routine terminates, it is restarted with the step size reset to

its initial value. If the previous result is indeed the maximum (or close enough), the

restarted optimization routine quickly terminates again. Eigenvalues are truncated to

six significant digits. Shape parameters are given with more significant digits so that

the results can be reliably reproduced. The precise error propagation is unknown.

We use the results of Antunes and Oudet [AnOu17] as references for compari-

son. But there is some uncertainty regarding the precision of those values. The first

eigenvalue λ1 has been proven to be maximized by a disk. The spectrum for the

disk can be stated analytically. It is composed of values π j′2pq where j′pq is the q-th

positive zero of J′p, the first derivative of the Bessel function of the first kind of or-

der p. These values can be computed very accurately with root finding algorithms.

The first eigenvalue is approximately 10.649866. The second eigenvalue λ2 is max-

imized by the union of two disks of the same size. Following the rules for spectrum

of disconnected shapes outlined above, the maximum is precisely 2λ1 or approx-

imately 21.299733. However, the values given in [AnOu17] are 10.66 for λ1 and

21.28 for λ2. This discrepancy is not discussed in their paper. While a value lower

than the analytical value could be simply be caused by incomplete optimization,

a higher value calls into question the precision of the eigenvalue solver. This has

direct implications for λ7 as well, for which the maximizer found by Antunes and

Oudet is a disjoint union of the maximizers of λ1 and λ6. The maximum value for λ7

therefore should be the sum of maximums for λ1 and λ6. It appears like the authors

used their own inaccurate value for λ1, so λ7 is inaccurate as well. Of course all

their results could be affected by an inaccurate solver, so any comparison can only

be tentative.

The base points for the maximizers of λk,k = 5,6,8,9,10 are k points on a regular

equilaterial triangular grid as they were for k = 3,4 (see Fig. 1.4). For λ7, Antunes

and Oudet did not find a connected shape maximizer. The maximizer can then be

constructed from the maximizers for k < 7, so it is improved automatically with

those. The positive results from [Kl19] have been confirmed with 32.9018, 32.9018,

32.9018 for λ3 and 43.8693, 43.8693, 43.8693 for λ4. The parameters differ slightly

from [Kl19] with c = 1.687730810,α = 2.019822714 and c = 2.084610015,α =
2.541256146, respectively. This might be explained by the finer discretiztion used.

Unfortunately, equipotentials work less and less well for higher k and less sym-

metric shapes. For λ5, which in [AnOu17] has multiplicity three, we have 54.5401,

54.5401, 56.0889 for c = 2.380671137 and α = 3.914738607. This is significantly

lower than the reference value 55.17 and the multiplicity is not reproduced. For

λ6 (multiplicity four), where the suspected shape is more regular, we get 67.0440,

67.0440, 67.0440, 67.0440 with c = 2.849410261,α = 0.660868556, which is a bit

closer to the reference value of 67.33 but still some distance away. For λ10 (multi-

plicity five), we even get 109.988 109.988 109.988 118.955 118.955 instead of the
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previous value 114.16 with c = 1.567009307,α = 5.196376634. The eigenvalues

for k = 7,8,9 that have been skipped have not been tried as there was no reason to

believe they would fare better.

The results strongly suggests that equipotentials as they are in (1.13) are not

general representations of the shape maximizers. They have shown potential but

need refinement. So far, the base points of the equipotentials have been arranged

on a completely regular triangular grid and all base points are weighted equally. As

there is no particular reason for this regularity other than visual intuition, breaking

it might prove beneficial. So the base points will be allowed to deviate slightly from

their regular position. The weight for the base points in the sum of potentials will

be allowed to deviate from the regular weight of one. The imagined balls around

base points expand as their weight increases. In general, the boundary of the shape

moves away from such points. This final equation reads

m

∑
i=1

1+ δ̂i

‖x− (pi + ε̂i)‖2α
= c

where ε̂i ∈ IR2 is the irregularity of position and δ̂i ∈ IR is the irregularity of weight

of base point i.

Some of the new parameters are fixed so that the shapes are unique and there are

no dependencies between parameters. The eigenvalues do not depend on the abso-

lute position of the domain in space, only on the relative position of its base points,

so at least one base point should remain fixed during optimization. One weight

should remain fixed to avoid a dependency between the weights and parameter c.

It is always possible to normalize one weight to a value of one without changing

the shape by dividing all weights and c by that weight. The degrees of freedom are

further reduced by a requirement that no rotation or reflection symmetries of the reg-

ular base points are broken. It must be said that at this point the conjecture that the

symmetries are meaningful is unproven. However, based on the results of Antunes

and Oudet, the conjecture seems reasonable and it keeps the number of parameters

low. So most of the parameters δ̂i and ε̂i will be fixed to zero. E.g. the shape for

λ3 will have no additional free parameters. One point must be fixed for uniqueness,

the others to preserve rotation symmetry. The shape for λ4 consists of two pairs of

points that are images of each other. One pair must be fixed. The other is free but

can only move along the symmetry axis. So there is one free coordinate and one

free weight. The free, non-zero parameters will be denoted as εi, i = 1, . . . , fε and

δi, i = 1, . . . , fδ with fδ and fε the number of degrees of freedom (Table 1.2). The

free parameters can be assigned to base points almost arbitrarily as long as symme-

try is conserved. We included our chosen assignment in the tables of results (Table

1.3 and 1.4). Due to rotation symmetry, some irregularities of position εi are not axis

aligned but point towards the rotation center. For convenience of implementation we

avoided irregularities of position that point away from the domain so that a positive

first optimization step does not tear the shape apart.

The introduction of ε and δ drastically improves the results over just two pa-

rameters. Fig. 1.5 shows the shapes and optimized eigenvalues. Tables 1.3 and 1.4
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k fε fδ f

3 0 0 2

4 1 1 4

5 3 2 7

6 1 1 4

8 6 4 12

9 7 4 13

10 1 2 5

Table 1.2 Degree of freedom of positions fε (each coordinate is counted separately) and weights

fδ and total degree of freedom f (including c,α) of the equipotential that is used to maximize λk

after symmetry and uniqueness of the shape and independence of parameters is handled. Degree of

freedom is generally greater for shapes with fewer symmetries or more base points.

show the full numerical results including parameters. The maximum for λ3 remains

unchanged as it did not gain any additional free parameters. The value of λ4 got an-

other small boost to 43.8700. For k = 4,6,8,10, we achieved higher maximums than

the reference value, sometimes by a small amount like λ6 = 67.3364 over 67.33 that

could be interpreted as just an increase in precision, sometimes significantly so with

λ8 = 89.8620 over 89.38 and λ10 = 114.187 over 114.16. Using the improved value

for λ6 and the precise value for λ1 (see above), λ7 can also be considered improved

even though the reference value is higher. The result for λ5 is now much closer than

it was using just two parameters but is still short of the reference value by about

2 ·10−2. The difference is small enough that it may still be caused by an inaccurate

reference value. For λ9, which is also too small, the distance to the reference value

is almost certainly too big to be explained in that way. Maybe coincidentally, similar

trapzeoid shapes are used in both cases (λ9 and λ5) where the reference value has

not been matched or exceeded.

The muliplicities given in [AnOu17] have not been precisely reproduced in all

cases. For example there is a small gap inbetween the values for λ8. For almost all

shapes, the eigenvalues have multiplicities one or two. With changing shapes, some

of those groups of identical eigenvalues increase, others decrease. In most cases,

both Antunes and Oudet and us have found the optimum where two groups merge,

producing multiplicities of three or four. Note that for unions of disjoint shapes,

higher multiplicities are expected, as the multiplicities of the component shapes

accumulate. Connected shapes where more than two groups merge may not exist

and the values for λ8 may simply be a near miss, where three groups almost merge.

On the other hand it is possible that we are simply not able to represent such shapes

with the chosen parametrization or that the optimization routine missed them.

1.4 Conclusion

We have presented a way to efficiently and precisely compute interior Neumann

eigenvalues for two dimensional domains. Along the way, we highlighted a few
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k Reference Maximum Parameters Base points and irregularities

3 32.90 (3) 32.9018

32.9018

32.9018

c = 1.687730810

α = 2.019822714

4 43.86 (3) 43.8700

43.8700

43.8700

c = 1.942568636

α = 2.751523202

ε1 = −1.314531646 ·10−2

δ1 = −4.623467053 ·10−2 δ1 δ1

ε1 ε1

5 55.17 (3) 55.1498

55.1498

55.1498

c = 1.548694899

α = 2.231247849

ε1 = −8.845230330 ·10−2

ε2 = −4.509337199 ·10−2

ε3 = −4.354727490 ·10−2

δ1 = −1.979312992 ·10−1

δ2 = −1.671890335 ·10−1

δ1δ1

δ2

ε1

ε2

ε1

ε2

ε3

6 67.33 (4) 67.3364

67.3364

67.3364

67.3364

c = 2.027170345

α = 1.706097040

ε1 = 1.577407017 ·10−1

δ1 = 6.001214705 ·10−3

δ1

δ1 δ1

ε1

ε1 ε1

7 77.99 (6) 77.9862

77.9862

77.9862

77.9862

77.9862

77.9862

� �

Table 1.3 Optimization results for interior Neumann eigenvalues λk,k = 3, . . . ,7 using extended

equipotentials. The second column gives the reference value of [AnOu17] with multiplicity in

parentheses. The third column contains the maximal eigenvalue that was found by us and as many

of the following eigenvalues as the multiplicity requires. The third column contains the equipoten-

tial parameters of the shape maximizer. The figures in the fourth column show the base points of

the equipotential and the assignment of free irregularity parameters ε and δ . The shape maximizer

for λ7 in [AnOu17] is a disconnected shape that is a union of the shape for λ6 with a disk and we

did not run numerical optimization on it. The values are the sum of the analytical maximum for λ1

and our new maximum for λ6.
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k Reference Maximum Parameters Base points and irregularities

8 89.38 (4) 89.8620

89.8620

89.8620

89.8621

c = 1.942964474

α = 1.810828390

ε1 = 1.219776174 ·10−1

ε2 = −9.776658965 ·10−2

ε3 = −4.652290511 ·10−2

ε4 = −6.000769737 ·10−2

ε5 = −7.584457864 ·10−2

ε6 = −2.247915505 ·10−1

δ1 = 5.396514489 ·10−1

δ2 = 2.082674393 ·10−1

δ3 = 1.353703658 ·10−1

δ4 = 9.643159176 ·10−2

δ1

δ2

δ3

δ4 δ4

δ3

δ2

ε1

ε2

ε3

ε2

ε3

ε4

ε5

ε4

ε5

ε6 ε6

9 101.83 (4) 101.752

101.752

101.752

101.752

c = 1.506287804

α = 1.928595020

ε1 = −2.021261311 ·10−1

ε2 = −1.184995442 ·10−1

ε3 = −1.272843752 ·10−1

ε4 = −1.075608953 ·10−1

ε5 = −3.596435931 ·10−2

ε6 = 7.343083116 ·10−3

ε7 = 8.586462162 ·10−2

δ1 = −3.306712889 ·10−2

δ2 = 5.598216794 ·10−1

δ3 = 7.664620451 ·10−3

δ4 = 1.043695363 ·100

δ1δ1

δ2

δ3 δ4 δ4 δ3

δ2

ε1

ε2

ε1

ε2

ε3

ε4

ε3

ε4

ε5

ε6

ε5

ε6ε7 ε7

10 114.16 (5) 114.187

114.187

114.187

114.187

114.187

c = 0.899837214

α = 2.708323325

ε1 = −4.458971106 ·10−2

δ1 = 1.150148658 ·100

δ2 = −2.824155602 ·10−1

δ2

δ1

δ1

δ2 δ1 δ1 δ2

δ1

δ1

ε1

ε1 ε1

Table 1.4 Optimization results for interior Neumann eigenvalues λk,k = 8,9,10 using extended

equipotentials. The second column gives the reference value of [AnOu17] with multiplicity in

parentheses. The third column contains the maximal eigenvalue that was found by us and as many

of the following eigenvalues as the multiplicity requires. The third column contains the equipoten-

tial parameters of the shape maximizer. The figures in the fourth column show the base points of

the equipotential and the assignment of free irregularity parameters ε and δ .
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λ1 = 10.6498 λ2 = 21.2997 λ3 = 32.9018 λ4 = 43.8700 λ5 = 55.1498∗

λ6 = 67.3364 λ7 = 77.9862 λ8 = 89.8620 λ9 = 101.752∗ λ10 = 114.187

Fig. 1.5 Shape maximizers for interior Neumann eigenvalues λk,k = 1, . . . ,10. An asterisk marks

values where the reference value by [AnOu17] has not been matched or exceeded. The first two

eigenvalues, which are proven theoretically, are included for completeness. For k= 3,4,5,6,8,9,10

the maximizers were found by optimizing the (extended) parameters of equipotentials. The maxi-

mizer for the seventh eigenvalue is a union of the scaled maximizers for the first and sixth eigen-

values and was not optimized on its own. All shapes have been scaled so they have the same area.

techniques to reduce the time to solution. The strongly scaling parallelization in

particular allowed us to use the implemented solvers in the optimization of the

eigenvalues with respect to the shape of the domain. We refined the parametriza-

tion of the shapes developed by previous research and found improved maximums

for most of the first ten eigenvalues.

The very specialized parametrization we presented requires fewer parameters

than more general approaches like Fourier series. This makes numerical optimiza-

tion much cheaper. But the new parametrization is unfortunately far from compact,

especially for higher eigenvalues. It is therefore unlikely to be helpful in any the-

oretical proof of shape maximizers. Numerical optimization was also not equally

successful in all cases. The general idea seems promising, but further adaptations

will be necessary. Ultimately, an entirely new idea might be called for.

It should prove insightful to study even higher eigenvalues than in this work.

Both the method of solution and the parametrization can also be extended without

great modifications to three dimensions. Similar results as for the interior Neumann

problem also exist for Dirichlet boundary conditions. So research similar to the one

in this work is possible in that area. We have concentrated on acoustic scattering.

One could also study electromagnetic or elastic problems.

The source code for the program is available at the URL below. We invite re-

searchers to check the program, extend it or use it in their own research.

https://gitlab.version.fz-juelich.de/abele2/shapeopt
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