
Chapter 1
Numerical calculation of interior transmission
eigenvalues with mixed boundary conditions

A. Kleefeld and J. Liu

Abstract Interior transmission eigenvalue problems for the Helmholtz equation
play an important role in inverse wave scattering. Some distribution properties of
those eigenvalues in the complex plane are reviewed. Further, a new scattering
model for the interior transmission eigenvalue problem with mixed boundary condi-
tions is described and an efficient algorithm for computing the interior transmission
eigenvalues is proposed. Finally, extensive numerical results for a variety of two-
dimensional scatterers are presented to show the validity of the proposed scheme.

1.1 Introduction

A transmission eigenvalue problem is a non-classical boundary value problem for a
specified differential operator which acts on a pair of functions (u(x),v(x)) in some
given open and bounded domain D, where the functions u(x) and v(x) are coupled
on the boundary ∂D = Γ . The exterior normal on Γ is denoted by ν .

A typical example arising in acoustic wave scattering is the (classical) interior
transmission eigenvalue problem with specified refraction index n(x) ∈ L∞(D) sat-
isfying Re{n(x)}> 0 and Im{n(x)} ≥ 0. It is given by

∆u+ k2u = 0 , x ∈ D ,

∆v+ k2n(x)v = 0 , x ∈ D ,

u = v , ∂u
∂ν

= ∂u
∂ν

, x ∈ Γ ,

(1.1)
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for which one tries to find k ∈ C\{0} such that there exists non-trivial solutions
(u,v) ∈ L2(D)× L2(D) and u− v ∈ H2

0 (D). These values k are called (classical)
interior transmission eigenvalues (ITEs).

Originally, the distribution properties of the eigenvalues such as discreteness and
their asymptotic behavior have been studied in detail in order to determine charac-
teristics of media [CoMo87, CoMo88, Ki86] as well as the existence [CaGiHa10].
These properties are not trivial to derive due to the fact that the underlying eigen-
value problem is neither elliptic nor self-adjoint. Hence, it cannot be investigated by
using standard spectral theory for differential operators. Hence, this interior trans-
mission problem is of interest to researchers working on non-standard spectral prob-
lems. Additionally, researchers are interested in finding incident waves that do not
scatter which is closely related to the interior eigenvalue problem (1.1) (see for ex-
ample [GiPa13]).

Reconstruction algorithms for inverse scattering problems are for example the
linear sampling method and the factorization method [CaCo06, KiGr08] which are
not justified theoretically for wave numbers that are ITEs. Hence, researchers started
to compute such exceptional values. It has been shown that ITEs can be deter-
mined from scattered data or far-field data [CaCoHa10]. Since then, a variety of
new methods such as FEM [LiHuLiLi15, Su11], BEM [Kl13, Kl15] and the inside-
outside-duality method [KiLe13] have appeared (see [KlPi18] for a recent and de-
tailed overview as well as the MFS method). However, the numerical calculation of
those is still an on-going and challenging research topic especially the calculation
of complex-valued ITEs whose existence is still open for general scatterer.

However, motivated by a more general physical configuration, the transmission
eigenvalue problems may be of a more complicated form. We consider the situation
where an inhomogeneous obstacle D is located in a perfect conducting substrate D2
with the boundary Γ2 ⊂ Γ , while the remaining part of the boundary Γ1 = Γ \Γ2
contacts with the surface of background dielectric medium D1. See Fig. 1.1 for an
illustration of the situation. Then the following interior transmission problem with
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Fig. 1.1 Exemplary setup of the physical configuration.
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mixed boundary condition arises (see also [YaMo14] and [LiLi16]):
∆u+ k2u = 0 , x ∈ D ,

∆v+ k2nv = 0 , x ∈ D ,

u = v , ∂u
∂ν

= ∂v
∂ν

, x ∈ Γ1 , (transmission condition)
u = v = 0 , x ∈ Γ2 , (hom. Dirichlet condition)

(1.2)

with Γ = Γ1 ∪Γ2 assuming Γ1 6= /0 and Γ2 6= /0. Here, n(x) 6= 1 is the real-valued
index of refraction. Although the distributions and the discreteness properties have
been analyzed in [LiLi16] for general complex-valued n(x), the efficient numerical
calculation of mixed interior transmission eigenvalues (MITEs) is still absent. This
is mainly due to the presence of the mixed boundary condition on Γ which causes
extra difficulties for the construction of suitable basis functions that are needed in
the finite element method.

But the boundary integral equation method is a powerful tool for solving bound-
ary value problems of partial differential equations (PDEs), especially when the
problem is homogeneous and the fundamental solution to the corresponding PDE
can be represented explicitly. The main advantage of solving boundary value prob-
lems by this scheme is, by representing the solution in potential form, the solu-
tion can be essentially converted into the task of finding a density function defined
on the boundary of the domain, and consequently the amount of computations can
be dramatically decreased (see [Kl12a]). By this motivation, we propose to solve
the mixed transmission eigenvalue problem (1.2) with constant refraction index
n(x) ≡ n (constant) in D ⊂ R2 by the boundary integral equation method since the
fundamental solution can be given explicitly in analytic form.

Contribution within this chapter

First, a short summary for the existence and discreteness for the real-valued in-
dex of refraction not equal to one is given in Section 1.2. Although the results are
a special case of [LiLi16], the sufficient conditions on the index of refraction as
well as the estimates of the lower bound of positive eigenvalues can be stated more
clearly. Second, a derivation of a system of boundary integral equations to solve
the mixed interior transmission problem including its approximation via boundary
element collocation method leading to a non-linear eigenvalue problem is given in
Section 1.3. Lastly, extensive numerical results for the computations of mixed inte-
rior transmission eigenvalues are presented for the first time for various scatterers
in two dimensions in Section 1.4. In addition, the corresponding eigenfunctions are
shown as well. A short summary and conclusion is given in Section 1.5. Finally, for
the special case of the unit square an alternative method is given in the Appendix to
find mixed interior transmission eigenvalues.
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1.2 A review on some theoretical results

To consider the numerical computations for the transmission eigenvalues of (1.2),
we first need the distribution properties of the eigenvalues. Although the properties
of the eigenvalues with classical boundary conditions have been thoroughly studied,
the theoretical results for eigenvalues using mixed boundary conditions as studied
here are still rare (see [LiLi16]). Since our numerical scheme for computing the
eigenvalues by boundary integral equations is established for the constant index of
refraction n(x) ≡ n0 in D for 0 < n0 < 1 or n0 > 1, some existing results for the
distributions of eigenvalues under the assumption either n(x) ∈ (0,1) or n(x) > 1
are applicable.

In this section, we give these theoretical properties of the transmission eigenval-
ues for n(x) ∈C(D) with either positive lower point n− > 1 or positive upper bound
n+ < 1, which means that there are no zero points of n(x)−1 in D. These results can
be considered as special cases established in [LiLi16] for both complex-valued re-
fraction index n(x) and complex-valued background medium. However, in our case
with real-valued index of refraction n(x), the corresponding results can be much
more simplified. To state the results clearly, we introduce the Sobolev space

H̃0,1(D) =
{

w ∈ L2(D), ∇w ∈ (L2(D))2 , ∆w ∈ L2(D) ,

w = 0 on Γ , ν ·∇w = 0 on Γ1} ,

with scalar product

〈u,v〉H̃0,1(D) = (u,v)L2(D)+(∇u,∇v)L2(D)+(∆u,∆v)L2(D)

for two complex-valued functions u and v from H̃0,1(D). Then the transmission
eigenvalue problem (1.2) can be restated as: Find k ∈C\{0} such that there exists a
non-zero pair (u,v) ∈ (L2(D))2 satisfying v−u ∈ H̃0,1(D) and

∆u+ k2u = 0 , x ∈ D ,

∆v+ k2nv = 0 , x ∈ D ,

u = v = 0 , x ∈ Γ2 . (hom. Dirichlet condition)

Note that the transmission conditions in (1.2) have been incorporated in the require-
ment v− u ∈ H̃0,1(D). In the case Γ2 = /0, it is well-known based on the analytic
Fredholm theorem that the set of ITEs is at most discrete with +∞ as the only
possible accumulation point. We will prove that such a property is also true for
our problem (1.2) with mixed boundary condition. Therefore, define z = v− u and
nc(x) = n(x)−1 6= 0 in D. Since z ∈ H̃0,1(D) fulfills

∆z+ k2z =−k2vnc , (1.3)

by deleting v, z(x) satisfies the following differential equation of fourth order
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∆ + k2n(x)

) 1
nc(x)

(
∆ + k2)z = 0 , x ∈ D . (1.4)

Using (1.3) and the boundary condition v|Γ2 = 0, we have

1
nc(x)

(
∆ + k2)z = 0 on Γ2 .

With z|Γ2 = v|Γ2 −u|Γ2 = 0 it can be further simplified to

1
nc(x)

∆z = 0 on Γ2 ,

Therefore, we conclude that the transmission eigenvalues k ∈ C\{0} are those val-
ues such that there exists some non-trivial solution z ∈ H̃0,1(D) satisfying

(
∆ + k2n(x)

) 1
nc(x)

(
∆ + k2

)
z = 0 , x ∈ D ,

z = 0 , x ∈ Γ = Γ1∪Γ2 ,
1

nc(x)
∆z = 0 , x ∈ Γ2 ,

∂ z
∂ν

= 0 , x ∈ Γ1 .

(1.5)

The distributions of the transmission eigenvalues can be analyzed in terms of (1.5).
To this end, we need the following estimate for u ∈ H̃0,1(D) (see [YaMo14]), which
can be considered as a generalization of the Poincaré inequality, and can be ap-
plied to estimate the lower bound of real-valued eigenvalues in order to qualify the
numerical results.

Lemma 1. For any w ∈ H̃0,1(D), we obtain the estimate

‖∇w‖2
L2(D) ≤

1
λ (D)

‖∆w‖2
L2(D) .

Here, λ (D) denotes the first eigenvalue of the buckled plate eigenvalue problem
given by: 

−∆ 2w = λ∆w , in D ,

w = 0 , on Γ = Γ1∪Γ2 ,

ν ·∇w = 0 , on Γ1 ,

∆w = 0 , on Γ2 .

For a real-valued index of refraction 0 < n(x) 6= 1 in D, there exists two constant
n− > 0 and n+ > 0 such that

n+ ≥ n(x)≥ n− > 1 , if n(x)|D > 1 ,
1 > n+ ≥ n(x)≥ n− > 0 , if n(x)|D < 1 ,
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which ensures

1
|n(x)−1|

≥ α > 0 , x ∈ D

for some small constant α > 0. Based on Lemma 1, the following results state the
distribution properties of the mixed interior transmission eigenvalues (MITEs).

Theorem 1. For a real-valued index of refraction 0 < n(x) 6= 1 in D, we assume that

0 <
1

n−−1
< 1 , if n(x)|D > 1 ,

0 <
n+

1−n+
< 1 , if n(x)|D < 1 . (1.6)

Then the set of MITEs is at most discrete and does not accumulate at zero and all
the real-valued MITEs (if they exist) are such that

k2 ≥

{
λ (D) n−−2

n−(n−−1) , if n(x)|D > 1 ,

λ (D) 1−2n+
1−n+

, if n(x)|D < 1 ,

where λ (D) is the first eigenvalue of (1.4).

This result is just a special case of [LiLi16, Theorem 3.3] since we have

0 <
1

|n(x)−1|
=

1
n(x)−1

≤ 1
n−−1

= α , if n(x)|D > 1 ,

0 <
1

|n(x)−1|
=

1
1−n(x)

≤ 1
1−n+

= α , if n(x)|D < 1 .

Therefore, we omit the details for the proof. As for the existence of mixed interior
transmission eigenvalues, [LiLi16, Theorem 3.7] leads to the following result.

Theorem 2. If (1.6) is replaced by the assumptions

0 <
1

n−−1
<

1
8
, if n(x)|D > 1 ,

0 <
n+

1−n+
<

1
8
, if n(x)|D < 1 , (1.7)

then there exists an infinite number of transmission eigenvalues with +∞ as the only
possible accumulation point.

Remark 1. The assumption (1.6) or (1.7) can be explained easily. Roughly speaking,
in the case n(x)|D 6= 1, if the values of n(x) are far away from the background index
n0(x)≡ 1, then there always exist discrete transmission eigenvalues (but not neces-
sarily being real-valued) with +∞ as the only possible accumulation point. In The-
orem 1, we need n(x)> n− > 2 for n(x)> 1 and n(x)< n+ < 1/2 for 0 < n(x)< 1.
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This condition is strengthened in Theorem 2 as n(x) > n− > 9 for n(x) > 1 and
n(x)< n+ < 1/9 for 0 < n(x)< 1.

Based on the theoretical results for the distributions of transmission eigenvalues for
a real-valued index of refraction n(x) 6= 1, we consider the numerical calculation of
mixed interior transmission eigenvalues for n(x) being constant in D by focusing on
the boundary integral equation method in the next section.

1.3 System of boundary integral equations and its approximation

In this section, we derive a 4×4 system of boundary integral equations to solve the
interior transmission problem with mixed boundary conditions.

Denote by Φk(x,y) = iH(1)
0 (k|x− y|)/4,x 6= y the fundamental solution of the

two-dimensional Helmholtz equation with wave number k. The single- and double-
layer potentials for the Helmholtz equation over the surface Γ are given for x /∈ Γ

by

SLΓ
k [ψ] (x) =

∫
Γ

Φk(x,y)ψ(y) ds(y) ,

DLΓ
k [ψ] (x) =

∫
Γ

∂ν(y)Φk(x,y)ψ(y) ds(y) .

According to Green’s representation theorem (see [CoKr13, p. 17]), we have

u(x) = SLΓ
k [∂ν u|Γ ] (x)−DLΓ

k [u|Γ ] (x) , x ∈ D . (1.8)

Due to the fact that Γ is the disjoint union of Γ1 and Γ2, we can rewrite (1.8) as

u(x) = SLΓ1
k [∂ν u|Γ1 ] (x)+SLΓ2

k [∂ν u|Γ2 ] (x)

− DLΓ1
k [u|Γ1 ] (x)−DLΓ2

k [u|Γ2 ] (x) , x ∈ D (1.9)

and similarly we obtain

v(x) = SLΓ1
k
√

n [∂ν v|Γ1 ] (x)+SLΓ2
k
√

n [∂ν v|Γ2 ] (x)

− DLΓ1
k
√

n [v|Γ1 ] (x)−DLΓ2
k
√

n [v|Γ2 ] (x) , x ∈ D . (1.10)

By the boundary condition u|Γ2 = v|Γ2 = 0, equations (1.9) and (1.10) can be sim-
plified to

u(x) = SLΓ1
k [∂ν u|Γ1 ] (x)+SLΓ2

k [∂ν u|Γ2 ] (x)−DLΓ1
k [u|Γ1 ] (x) , (1.11)

v(x) = SLΓ1
k
√

n [∂ν v|Γ1 ] (x)+SLΓ2
k
√

n [∂ν v|Γ2 ] (x)−DLΓ1
k
√

n [v|Γ1 ] (x) , (1.12)
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where x∈D. The boundary integral operators over the surface Γi evaluated at a point
of Γj are defined as

S
Γi→Γj
k [ψ|Γi ] (x) =

∫
Γi

Φk(x,y)ψ(y) ds(y) , x ∈ Γj ,

K
Γi→Γj
k [ψ|Γi ] (x) =

∫
Γi

∂νi(y)Φk(x,y)ψ(y) ds(y) , x ∈ Γj ,

K>k
Γi→Γj

[ψ|Γi ] (x) =
∫

Γi

∂ν j(x)Φk(x,y)ψ(y) ds(y) , x ∈ Γj ,

T
Γi→Γj
k [ψ|Γi ] (x) = ∂ν j(x)

∫
Γi

∂νi(y)Φk(x,y)ψ(y) ds(y) , x ∈ Γj ,

where i, j ∈ {1,2}.

1.3.1 First boundary integral equation

Letting D 3 x → x ∈ Γ1 in (1.12) and (1.12) and using the jump relations (see
[CoKr13, p. 39]), yields

u|Γ1 = SΓ1→Γ1
k [∂ν u|Γ1 ]+SΓ2→Γ1

k [∂ν u|Γ2 ]−
(

KΓ1→Γ1
k [u|Γ1 ]−

1
2

u|Γ1

)
(1.13)

and

v|Γ1 = SΓ1→Γ1
k
√

n [∂ν v|Γ1 ]+SΓ2→Γ1
k
√

n [∂ν v|Γ2 ]−
(

KΓ1→Γ1
k
√

n [v|Γ1 ]−
1
2

v|Γ1

)
. (1.14)

Taking the difference of (1.13) and (1.14) and using the boundary conditions u|Γ1 =
v|Γ1 and ∂ν u|Γ1 = ∂ν v|Γ1 , gives the first boundary integral equation

0 =
(

SΓ1→Γ1
k −SΓ1→Γ1

k
√

n

)
[∂ν u|Γ1 ]+SΓ2→Γ1

k [∂ν u|Γ2 ]

− SΓ2→Γ1
k
√

n [∂ν v|Γ2 ]−
(

KΓ1→Γ1
k −KΓ1→Γ1

k
√

n

)
[u|Γ1 ] . (1.15)

1.3.2 Second boundary integral equation

Applying the same strategy as before for D 3 x→ x ∈Γ2 in (1.12) and (1.12), yields

u|Γ2 = SΓ1→Γ2
k [∂ν u|Γ1 ]+SΓ2→Γ2

k [∂ν u|Γ2 ]−KΓ1→Γ2
k [u|Γ1 ] (1.16)

and
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v|Γ2 = SΓ1→Γ2
k
√

n [∂ν v|Γ1 ]+SΓ2→Γ2
k
√

n [∂ν v|Γ2 ]−KΓ1→Γ2
k
√

n [v|Γ1 ] . (1.17)

Taking the difference of (1.16) and (1.17), setting u|Γ2 = v|Γ2 = 0, and applying
the boundary conditions u|Γ1 = v|Γ1 and ∂ν u|Γ1 = ∂ν v|Γ1 , gives the second boundary
integral equation

0 =
(

SΓ1→Γ2
k −SΓ1→Γ2

k
√

n

)
[∂ν u|Γ1 ]+SΓ2→Γ2

k [∂ν u|Γ2 ]

− SΓ2→Γ2
k
√

n [∂ν v|Γ2 ]−
(

KΓ1→Γ2
k −KΓ1→Γ2

k
√

n

)
[u|Γ1 ] . (1.18)

1.3.3 Third boundary integral equation

Next, we apply the normal derivative to (1.12) and (1.12), let D 3 x→ x ∈ Γ1, and
use the jump relations. This yields

∂ν u|Γ1 = K>k
Γ1→Γ1 [∂ν u|Γ1 ]+

1
2

∂ν u|Γ1 +K>k
Γ2→Γ1 [∂ν u|Γ2 ]

− TΓ1→Γ1
k [u|Γ1 ] (1.19)

and

∂ν v|Γ1 = K>k√n
Γ1→Γ1 [∂ν v|Γ1 ]+

1
2

∂ν v|Γ1 +K>k√n
Γ2→Γ1 [∂ν v|Γ2 ]

− TΓ1→Γ1
k
√

n [v|Γ1 ] . (1.20)

Taking the difference of (1.19) and (1.20) and using the boundary conditions u|Γ1 =
v|Γ1 and ∂ν u|Γ1 = ∂ν v|Γ1 , gives the third boundary integral equation

0 =
(

K>k
Γ1→Γ1 −K>k√n

Γ1→Γ1
)
[∂ν u|Γ1 ]+K>k

Γ2→Γ1 [∂ν u|Γ2 ]

− K>k√n
Γ2→Γ1 [∂ν v|Γ2 ]−

(
TΓ1→Γ1

k −TΓ1→Γ1
k
√

n

)
[u|Γ1 ] . (1.21)

1.3.4 Fourth boundary integral equation

Again, we apply the normal derivative to (1.12) and (1.12), let D 3 x→ x ∈ Γ2, and
use the jump relations. This gives

∂ν u|Γ2 = K>k
Γ1→Γ2 [∂ν u|Γ1 ]+K>k

Γ2→Γ2 [∂ν u|Γ2 ]+
1
2

∂ν u|Γ2

− TΓ1→Γ2
k [u|Γ1 ] (1.22)
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and

∂ν v|Γ2 = K>k√n
Γ1→Γ2 [∂ν v|Γ1 ]+K>k√n

Γ2→Γ2 [∂ν v|Γ2 ]+
1
2

∂ν v|Γ2

− TΓ1→Γ2
k
√

n [v|Γ1 ] . (1.23)

Equations (1.22) and (1.23) can be rewritten as

0 = K>k
Γ1→Γ2 [∂ν u|Γ1 ]+K>k

Γ2→Γ2 [∂ν u|Γ2 ]−TΓ1→Γ2
k [u|Γ1 ]

− 1
2

∂ν u|Γ2 (1.24)

and

0 = K>k√n
Γ1→Γ2 [∂ν v|Γ1 ]+K>k√n

Γ2→Γ2 [∂ν v|Γ2 ]−TΓ1→Γ2
k
√

n [v|Γ1 ]

− 1
2

∂ν v|Γ2 (1.25)

respectively. Taking the difference of (1.24) and (1.25) and using the boundary con-
ditions u|Γ1 = v|Γ1 and ∂ν u|Γ1 = ∂ν v|Γ1 , gives the fourth boundary integral equation

0 =
(

K>k
Γ1→Γ2 −K>k√n

Γ1→Γ2
)
[∂ν u|Γ1 ]+K>k

Γ2→Γ2 [∂ν u|Γ2 ]

− K>k√n
Γ2→Γ2 [∂ν v|Γ2 ]−

(
TΓ1→Γ2

k −TΓ1→Γ2
k
√

n

)
[u|Γ1 ]−

1
2

∂ν u|Γ2

+
1
2

∂ν v|Γ2 . (1.26)

1.3.5 System of boundary integral equations

The four equations (1.15), (1.18), (1.21), and (1.26) can be written abstractly as

Z(k)g = 0 (1.27)

with Z(k) given by
SΓ1→Γ1

k −SΓ1→Γ1
k
√

n KΓ1→Γ1
k −KΓ1→Γ1

k
√

n SΓ2→Γ1
k SΓ2→Γ1

k
√

n

SΓ1→Γ2
k −SΓ1→Γ2

k
√

n KΓ1→Γ2
k −KΓ1→Γ2

k
√

n SΓ2→Γ2
k SΓ2→Γ2

k
√

n

K>k
Γ1→Γ1 −K>k√n

Γ1→Γ1 TΓ1→Γ1
k −TΓ1→Γ1

k
√

n K>k
Γ2→Γ1 K>k√n

Γ2→Γ1

K>k
Γ1→Γ2 −K>k√n

Γ1→Γ2 TΓ1→Γ2
k −TΓ1→Γ2

k
√

n K>k
Γ2→Γ2 − 1

2 I K>k√n
Γ2→Γ2 − 1

2 I


(1.28)

and
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g =
(

α −β γ −δ
)>

,

where we used the notation

α = ∂ν u|Γ1 , β = u|Γ1 , γ = ∂ν u|Γ2 , and δ = ∂ν v|Γ2 . (1.29)

The matrix entries in (1.28) are boundary integral operator with a specific kernel.
If the operator O is of the form OΓi→Γj with i 6= j, then the kernel is smooth. Ad-
ditionally, the kernel of the operator SΓ1→Γ1

k − SΓ1→Γ1
k
√

n is smooth as well. The re-
maining entries contain a kernel with a weak singularity which is of logarithmic
form (notice again that n 6= 1 in D). In three dimensions the situation changes
slightly to a weak singularity. Hence, in both cases the system can easily be ap-
proximated numerically to high accuracy by the boundary element collocation
method as developed in [KlLi11, KlLi12] which has been successfully used in
[AnChAk13, KiKl12, Kl12b, Kl12c] for the three-dimensional case.

To show that the operator is Fredholm of index zero and analytic for k ∈C\R≤0,
one would follow the same arguments as given in [Co11, Theorem 5.3.9] or
[CoHa13]. The only difficulty is to use the correct Sobolev spaces of the form
H̃s(Γi) (see [Mc00] for the definition of the Sobolev spaces) or alternatively the
Lions-Magenes spaces Hs

00(Γi) as given in [LiMa72].

1.3.6 Approximation of the system

In this section, we shortly explain how to discretize the resulting boundary integral
operator via boundary element collocation method. An extensive explanation has
previously been given in [KlLi11, KlLi12] for the three-dimensional case and the
two-dimensional case works conceptually similar (see also [At97] for the Laplace
equation).

We consider two kinds of scatterers in two dimensions. The first class has a
boundary that can be described through polar coordinates and the second class has
a boundary that can be described through lines. For the first class, we define the
set of points through an equidistant use of the polar angle whereas for the second
class the edges are subdivided in equal parts. The curved boundary for the scatterers
of the first class is now approximated by a polygon having the previously defined
points as vertices. The set of collocation points are the midpoints of each line seg-
ment having m collocation points in total. Now, the approximation of each integral
over such a line segment can easily be carried out by numerical integration where
we assume that the unknown function is approximated by constant interpolation at
a midpoint. Note that we have at most a logarithmic singularity in the kernel if the
collocation point is situated on a line segment on which we are integrating over. A
Gauss-Kronrad quadrature can deal easily with such a singularity.

After the discretization, we can regard (1.28) as a non-linear eigenvalue prob-
lem of the form Z(k)g̃ = 0 with Z(k) ∈ Cm×m and g̃ the discretized version



12 A. Kleefeld and J. Liu

of g given by (1.29) which we solve with Beyn’s algorithm [Be12] as done in
[CaKr17, Kl13, Kl15, StUn12]. This algorithm uses complex-valued contour in-
tegration of the resolvent to reduce the non-linear eigenvalue problem to a linear
eigenvalue problem of much smaller size based upon the famous Keldysh’s The-
orem. For this algorithm one has to specify a 2π-periodic contour in the complex
plane and it will find all non-linear eigenvalues situated in this contour to high accu-
racy due to the fact that the approximation of a 2π-periodic function via the trape-
zoidal rule yields exponential convergence. We therefore use a circle of radius R
with center C = (cx,cyi) with N = 40 nodes for the trapezoidal rule.

1.4 Numerical results

In this section, we present extensive numerical results for some two-dimensional
scatterers although we can easily calculate them in three dimensions as shown in
[Kl13, Kl15] for the classic interior transmission eigenvalues. The reason is that we
can nicely present the corresponding eigenfunctions which is much more difficult
in three dimensions.

The first scatterer under consideration is the unit circle C , where we used Γ1 as
the upper half of the circle and Γ2 as the lower half of the circle. The first five MITEs
are given by 1.6818, 2.3185, 2.9533, 3.0791, and 3.1409 where we used the index
of refraction n = 4. After solving the non-linear eigenvalue problem (1.27) using the
parameters N = 40, R = 1/2, with centers C = (2,0i) and C = (3,0i), respectively,
we additionally obtain the discretized version of the functions ∂ν u|Γ1 = ∂ν v|Γ1 ,
u|Γ1 = v|Γ1 , ∂ν u|Γ2 , and ∂ν v|Γ2 . We also have u|Γ2 = v|Γ2 = 0 and hence we can in-
sert these function approximations into (1.12) and (1.12) in order to compute the
approximate solution of u and v at any point situated inside of the scatterer C .
We denote with u(i) and v(i) the approximate eigenfunctions corresponding to the
i-th MITE. The absolute value of u(i) and v(i) inside C for the first five MITEs are
shown in Fig. 1.2. Note that we were also able to find a complex-valued MITE pair
2.3596+ 0.3413i and 2.3592− 0.34134i. The corresponding eigenfunctions u(cv)

and v(cv) are also given in Figure 1.2. Since we used constant interpolation for the
boundary element collocation method, a linear convergence rate for the eigenval-
ues is expected and achieved. Note that we do not know the exact MITE values.
However, we observe that the error of the imaginary part of the real-valued MITE
halves if we double the number of collocation nodes m. In Table 1.1 we clearly see
the linear convergence order. Next, we calculate the MITEs for an ellipse E with
major semi-axis 1 and minor semi-axis 4/5 using the same parameters as before.
We obtain the four real-valued MITEs 1.9111, 2.4973, 3.1282, and 3.4609. Ad-
ditionally, we get the following complex-valued MITE pair 2.7340+ 0.3801i and
2.7334− 0.3802i. The corresponding eigenfunctions are shown in Fig. 1.3. If we
use the major semi-axis 1 and minor semi-axis 1/2 for the ellipse with the same
parameters as before, we obtain the first four real-valued MITEs 2.7709, 3.1764,
3.7892, and 4.3916. A complex-valued MITE pair is given by 3.8947 + 0.5352i
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Fig. 1.2 The absolute value of the eigenfunctions u (first row and third row) and v (second row and
fourth row) for the first five real-valued MITEs and one complex-valued MITE for the unit circle
C using the index of refraction n = 4. The MITEs are 1.6818, 2.3185, 2.9533, 3.0791, 3.1409 and
2.3596+0.3413i, respectively.

and 3.8928− 0.5365i. Using the minor semi-axis 3/10 yields the four real-valued
MITEs 4.5026, 4.7231, 5.2731, and 5.7279. Note that the classical interior transmis-
sion eigenvalues for various minor semi-axis are given in [CaKr17, KlPi18] and a
summary of the results for the various ellipses are given in Table 1.2. In Table 1.3 we
list the first four real-valued MITEs for deformed ellipses given by the parametriza-
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Table 1.1 Convergence of the first five real-valued MITEs for the unit circle C using the index of
refraction n = 4.

m k(1) k(2) k(3) k(4) k(5)

20 1.6691+0.0445i 2.3048+0.0268i 2.9405+0.0176i 3.1055+0.0063i 3.1687+0.0054i
40 1.6735+0.0216i 2.3075+0.0132i 2.9412+0.0094i 3.0846+0.0037i 3.1475+0.0028i
80 1.6772+0.0106i 2.3121+0.0066i 2.9460+0.0050i 3.0800+0.0020i 3.1424+0.0014i

160 1.6795+0.0052i 2.3152+0.0033i 2.9495+0.0025i 3.0791+0.0010i 3.1412+0.0007i
320 1.6808+0.0026i 2.3170+0.0017i 2.9516+0.0013i 3.0790+0.0005i 3.1410+0.0003i
640 1.6814+0.0013i 2.3180+0.0008i 2.9527+0.0007i 3.0791+0.0003i 3.1409+0.0002i

1280 1.6818+0.0007i 2.3185+0.0004i 2.9533+0.0003i 3.0791+0.0001i 3.1409+0.0001i

Table 1.2 The first four real-valued MITEs for ellipses with major semi-axis 1 and various minor
semi-axis using the index of refraction n = 4.

Minor semi-axis 1st MITE 2nd MITE 3rd MITE 4th MITE
1 1.6818 2.3185 2.9533 3.0791

4/5 1.9111 2.4973 3.1282 3.4609
1/2 2.7709 3.1764 3.7892 4.3916

3/10 4.5026 4.7231 5.2731 5.7279

tion (3cos(t)/4+κ cos(2t),sin(t)), t ∈ [0,2π) for κ = 0,1/10,1/5, and 3/10 which
has been used before in [CaKr17, KlPi18] for classical interior transmission eigen-
values. We again used n = 4 and 1280 collocation points and the same boundary
conditions as before.

Table 1.3 The first four real-valued MITEs for deformed ellipses with various deformation pa-
rameter κ using the index of refraction n = 4.

κ 1st MITE 2nd MITE 3rd MITE 4th MITE
0 1.9626 2.8575 3.2436 3.6951

1/10 1.9755 2.8404 3.2836 3.6542
1/5 2.0122 2.8087 3.3753 3.5941

3/10 2.0674 2.7899 3.4327 3.6203

The MITEs for the unit square S using the index of refraction n = 4 with trans-
mission conditions on the south and east part and homogeneous Dirichlet condi-
tions on the north and west part of the boundary are given by 3.0503, 4.2622, and
5.1805 where we used 512 collocation points and R = 1 with the centers C = (2,0i),
C = (3,0i), and C = (4,0i), respectively. Fig. 1.4 shows the absolute value of the
first three eigenfunctions u(i) and v(i) for the unit square. In Fig. 1.5 we display the
first three eigenfunctions u(i) and v(i) for the unit square for the eigenvalues 2.6717,
3.6662, and 4.8367, respectively where we used the index of refraction n = 4 with
transmission conditions on the south part and homogeneous Dirichlet condition on
the remaining edges. We again used 512 collocation points and R = 1 with the cen-
ters C = (2.5,0i), C = (3.5,0i), and C = (4.5,0i), respectively. Note that in this case
it is possible to derive an analytic equation such that its zeros are the MITEs (we re-
fer the reader to Table 1.5 in the Appendix). We obtain with a root finding algorithm
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Fig. 1.3 The absolute value of the eigenfunctions u (first row and third row) and v (second row and
fourth row) for the first four real-valued MITEs and one complex-valued MITE for the ellipse E
using the index of refraction n = 4. The MITEs are 1.9111, 2.4973, 3.1282, 3.4609 and 2.7340+
0.3801i, respectively.

2.671552787839805, 3.666034666514623, and 4.836476632026555 and hence
the first four digits of the reported results agree.

Next, we also present the first three real-valued MITEs for the unit square where
we impose homogeneous Dirichlet condition on the west part and transmission con-
dition on the remaining edges. We use the same parameters as before. We obtain
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Fig. 1.4 The absolute value of the eigenfunctions u (first row) and v (second row) for the first three
real-valued MITEs for the unit square S using the index of refraction n = 4 with transmission
conditions on the south and east part and homogeneous Dirichlet conditions on the north and west
part of the boundary. The MITEs are 3.0503, 4.2622, and 5.1805, respectively.
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Fig. 1.5 The absolute value of the eigenfunctions u (first row) and v (second row) for the first three
real-valued MITEs for the unit square S using the index of refraction n = 4 with transmission
conditions on the south part and homogeneous Dirichlet conditions on the remaining edges. The
MITEs are 2.6717, 3.6662, and 4.8367, respectively.
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4.0802, 5.2285, and 5.7030. The corresponding three eigenfunctions u(i) and v(i)

are given in Fig. 1.6.
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Fig. 1.6 The absolute value of the eigenfunctions u (first row) and v (second row) for the first three
real-valued MITEs for the unit square S using the index of refraction n = 4 with homogeneous
Dirichlet conditions on the west part and transmission conditions on the remaining edges. The
MITEs are 4.0802, 5.2285, and 5.7030, respectively.

To complete our numerical results, we also present numerical results for the case
0 < n < 1 using the index of refraction n = 1/2. Again we use ellipses with various
minor axis similar as in Table 1.3. The results are summarized in Table 1.4.

Table 1.4 The first four real-valued MITEs for ellipses with major semi-axis 1 and various minor
semi-axis using the index of refraction n = 1/2.

Minor semi-axis 1st MITE 2nd MITE 3rd MITE 4th MITE
1 3.1620 4.5193 4.6482 5.8022

4/5 3.5798 4.8518 5.5187 6.2683
1/2 5.1115 6.1186 7.3248 8.4891

To find the MITEs we use a circle with radius R = 1/2 and centers C = (3,0i),
C = (4.5,0i), and C = (6,0i) in the non-linear eigenvalue solver for the unit cir-
cle scatterer whereas we use the centers C = (3.5,0i), C = (4.5,0i), C = (5.5,0i)
and C = (6.5,0i) for the ellipse with minor semi-axis 4/5. For the ellipse with
minor semi-axis 1/2 we use the centers C = (5,0i), C = (6,0i), C = (7,0i) and
C = (8.5,0i).

As a final remark, we would like to mention that we also tried different n not
satisfying (1.6) and (1.7). In all cases, we have an accumulation point at infinity and
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no trouble computing the MITEs. This can also be verified numerically with (1.32)
for a variety of n and p.

Additionally, all presented numerical results are indeed mixed interior transmis-
sion eigenvalues (not mixed exterior transmission eigenvalues), since we always
computed the corresponding eigenfunctions which are zero outside of the domain
D. Alternatively, one could impose the additional condition on the far field as done
in [CoHa13].

1.5 Summary and conclusion

In this paper, existence and discreteness for mixed interior transmission eigenvalues
for a real-valued index of refraction is reviewed and sufficient conditions on the in-
dex of refraction as well as the estimates of the lower bound of positive eigenvalues
are given. A new system of boundary integral equations to solve the mixed interior
transmission problem is derived. Further, it is explained how this system can be ap-
proximated via the boundary element collocation method. The resulting non-linear
eigenvalue problem is then solved with complex-valued contour integrals. Extensive
numerical results for the computation of mixed interior transmission eigenvalues
are provided for the first time for a variety of two-dimensional scatterers and might
therefore serve as reference values for new algorithms in the future. Further, an ex-
plicit expression for mixed interior transmission eigenvalues is given for the unit
square and can therefore be used to check the approximation quality of new algo-
rithms. Moreover, the eigenfunctions are shown as well. Hence, it might be worth-
while studying the behavior of the eigenfunctions both for regular scatterers as well
as scatterers with corners (see [BlLiLiWa17]). Additionally, a rigorous convergence
analysis needs to be worked out in the future. In sum, this chapter might provide
a fundamental basis for a further study of this interesting eigenvalue problem. One
direction could be the investigation whether the inside-outside-duality method (see
[KiLe13, LePe14, PeKl16]) can be applied both theoretically and practically to the
mixed interior transmission problem.
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Appendix

We consider the unit square �̃ with transmission boundary condition on the north
part and homogeneous Dirichlet conditions on the remaining edges. Separation of
variables gives

u(x,y) = (Asin(π px)+Bcos(π px))
(

Ceλy +De−λy
)

v(x,y) =
(
Âsin(π px)+ B̂cos(π px)

)(
Ĉeλ̂y + D̂e−λ̂y

)
with n the given index of refraction. Here λ =

√
π2 p2− k2 and λ̂ =

√
π2 p2−nk2.

Using the boundary condition u = v = 0 on the east part yields B = B̂ = 0, the
boundary condition u = v = 0 gives p ∈ N, and the boundary condition u = v = 0
on the south part yields D =−C and D̂ =−Ĉ. Hence, we have

u(x,y) = sin(π px)
(

eλy− e−λy
)
, v(x,y) = csin(π px)

(
eλ̂y− e−λ̂y

)
with c∈R a free parameter. The first transmission condition on the north part (y= 1)
gives

c =
{

eλ − e−λ

}
\
{

eλ̂ − e−λ̂

}
. (1.30)

The second transmission condition on the north part yields(
eλ + e−λ

)
λ = c

(
eλ̂ + e−λ̂

)
λ̂ . (1.31)

Inserting (1.30) into (1.31) gives(
eλ̂ − e−λ̂

)(
eλ + e−λ

)
λ −

(
eλ − e−λ

)(
eλ̂ + e−λ̂

)
λ̂ = 0 . (1.32)

Hence, the function, say fp(k), on the right-hand side has to be solved for a given
p ∈ N with a root finding algorithm in order to obtain the MITE k. Note that the
function can be complex-valued and therefore we have to consider separately the
real and imaginary part. In Table 1.5 we summarize the highly accurate MITEs
using the index of refraction n = 4. In parentheses we list the used parameter p.

Table 1.5 The first twelve real-valued MITEs for �̃ using the index of refraction n = 4.

2.671552787839805(1) 3.666034666514623(2) 4.836476632026555(2)
5.037735005038399(3) 5.735963618893019(1) 5.883918727662464(3)
6.294288796613341(2) 6.516005567788862(4) 7.024814731040726(2)
7.038184014872755(3) 7.160899902925930(4) 7.695549983552737(4)
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